Добавить в цитаты Настройки чтения

Страница 8 из 10

Здесь мы подходим к самой сути концептуальной новизны теории относительности Эйнштейна: ниспровержение общего для всей Вселенной абсолютного времени Ньютона и его замена множеством независимых времен, различающихся между собой. Этот серьезный дисбаланс времени иллюстрируется так называемым парадоксом близнецов (рис. 1). В своей исходной версии этот парадокс был сформулирован Эйнштейном на конференции в Цюрихе в январе 1911 г. Он предложил представить, что некий живой организм помещается в контейнер, которому затем сообщается скорость, близкая к скорости света. (Заметим, что отношение k между «временем на Земле» и «временем в движущемся контейнере» стремится к бесконечности по мере того, как скорость контейнера приближается к скорости света.) После того как контейнер преодолевает значительное расстояние, скажем пять световых лет, он возвращается в исходную точку опять же со скоростью, близкой к скорости света. Открыв контейнер после его возвращения, мы обнаружим, что «путешествовавший» организм почти не изменился, тогда как аналогичные организмы, оставшиеся на Земле, постарели лет на 10 (или в случае более далекого путешествия или ограниченной продолжительности жизни данного организма «давно сменились бы новыми поколениями»).

Французский физик Поль Ланжевен придал этому рассуждению большую наглядность, предложив представить, что путешествующим организмом является человек, запущенный в пушечном ядре, подобно героям Жюль Верна. После возвращения путешественник, словно Рип Ван Винкль{32}, обнаружит, что его современники превратились в стариков. В более современном описании данного парадокса вместо пушечного ядра обычно используются космическая ракета и пара близнецов, один из которых совершает путешествие и после возвращения обнаруживает, что оставшийся брат стал гораздо старше него. Заметим, когда мы говорим здесь о старении или продолжительности жизни, то имеем в виду «обыкновенное время», которое организм проживает и которое измеряется, например, количеством биений сердца или интервалами, необходимыми, чтобы сварить яйцо.

Рефрижератор времени

Независимо от того, какую версию парадокса близнецов мы выбираем, эффект замедления времени, связанный с фактором k, становится ощутимым, только когда путешественник передвигается со скоростью, сравнимой со скоростью света, т. е. 300 000 км/с, что значительно превосходит все привычные нам скорости. Таким образом, поскольку парадокс близнецов возникает лишь в ситуациях, весьма удаленных от нашего повседневного опыта, кажется, что он не может повлиять на наше интуитивное восприятие времени, которое складывалось веками. Тем не менее мы можем усилить психологическое и экзистенциальное влияние этого парадокса, следуя примеру, предложенному русским физиком Г. Гамовым в его превосходных научно-популярных книгах{33}. Представим, что мы живем в мире, который отличается от нашего лишь тем, что скорость света в нем намного ниже. Например, представим, что скорость света составляет лишь 30 км/ч. В подобной вселенной внешний край детской карусели мог бы достигать скорости, весьма близкой к скорости света. Такая карусель представляла бы собой своего рода временной холодильник, который замораживает течение времени для людей, находящихся на платформе, по отношению к течению времени для внешних наблюдателей. Так, если мать двух близнецов посадит одного из них на деревянную лошадку и забудет там на год (!), то, вернувшись, она обнаружит его почти не изменившимся, тогда как его брат-близнец (и мать), оставшийся на земле станет старше на один год. Заметим, что такой временной холодильник не позволяет «жить дольше», т. е. не позволяет увеличить количество биений сердца, по сравнению с тем, что было бы на твердой земле. Полная длительность времени, прожитая движущимся близнецом и измеренная числом сердечных сокращений, будет той же (если пренебречь биологическим влиянием центробежного ускорения), что и для неподвижного близнеца. Эффект карусели позволяет лишь, как это делает криогенная консервация, вернуться в мир и обнаружить, что другие прожили определенное количество лет, которых у вас не было.

Парадокс близнецов наглядно иллюстрирует тот факт, что теория относительности Эйнштейна переворачивает общее понятие независимого времени, в котором проистекает эволюция Вселенной. Этот концептуальный переворот поразил в апреле 1911 г. философов по всему миру, когда Ланжевен выступил с докладом об «Эволюции пространства и времени» на Международном конгрессе философии в Болонье, где он представил свой пример путешественника, отправленного в снаряде с большой скоростью. В 1920 г. широкую общественность в мире глубоко заинтриговало появление в газетах информации об Эйнштейне и его революционных теориях пространства и времени. Удивительно, что сегодня, через столетие после выхода в свет основополагающей работы Эйнштейна, этот концептуальный переворот практически не замечается. В современных научно-популярных статьях, касающихся определенных следствий теорий Эйнштейна, таких как Большой взрыв или черные дыры, на самом деле предлагается зачастую классическое понятие универсального времени. Таким образом, революционные концепции Эйнштейна, не найдя общего понимания, просто игнорируются. Одной из мотиваций автора при создании этой книги стало стремление в какой-то степени вернуть этим идеям исходную яркость.

Мы продолжим обсуждение глубокого значения относительного времени Эйнштейна в следующей главе. Здесь же лишь отметим, что наблюдаемые явления, ассоциированные с «расхождением времени», предсказанным Эйнштейном, и связанные с наличием фактора k, зависящем от скорости, были проверены лишь много лет спустя. В своей знаменитой статье в июне 1905 г. Эйнштейн отмечает, что, в принципе, эффект изменения темпа времени при изменении скорости должен быть наблюдаемым на Земле, если сравнить часы (в состоянии покоя), расположенные на экваторе, и часы такой же конструкции, расположенные на полюсе. В самом деле, если мы пренебрежем притяжением{34}, то вращение Земли – подобно карусели и часы на краю этой карусели должны «идти медленнее», чем часы на ее оси. В 1907 г. Эйнштейн показал, что еще проще зафиксировать другое следствие разбалансированности времени, описанное в июне 1905 г.: частота, излучаемая атомом, движущемся перпендикулярно к линии зрения наблюдателя, ниже, чем частота аналогичного атома в состоянии покоя. В конце 1930-х гг. это следствие было установлено с высокой точностью Г. Ивесом и Г. Стилвеллом. То, что скорость выступает в роли «холодильника» для времени, было проверено в 1940-х и 1950-х гг. при изучении кажущегося увеличения срока жизни определенных элементарных частиц. В 1970-х гг. стабильность атомных часов достигла такого качества, что позволила непосредственно зафиксировать кажущееся замедление часов, путешествующих в самолетах. В настоящее время эффект расхождения показаний движущихся часов непрерывно проверяется и используется в американской системе глобального позиционирования (GPS) на основе группы спутников Земли, снабженных атомными часами и охватывающих весь земной шар. В последних двух случаях расхождение показаний, возникающее вследствие разной скорости, комбинируется с эффектом, возникающим вследствие гравитации, который мы обсудим чуть ниже. В действительности в настоящее время стабильность атомных часов, предназначенных для коммерческой продажи, настолько велика, что, без сомнения, можно было бы продемонстрировать широкой общественности парадокс близнецов, сравнив показания часов на лабораторной карусели с показаниями аналогичных часов на земле. На основании парадокса близнецов может показаться, что в результате «замедления течения времени» с увеличением скорости регулярное занятие бегом позволяет человеку оставаться моложе или, вернее, медленнее стареть по сравнению с его малоподвижными друзьями. Это верно, но, к сожалению, поскольку скорость света очень велика по сравнению со скоростью нашего бега, «выигрыш» будет весьма незначительным. Например, круглосуточный бег в течение 75 лет со скоростью марафонца позволяет «выиграть» лишь треть микросекунды!

вернутьсявернутьсявернуться