Добавить в цитаты Настройки чтения

Страница 2 из 14



Рис. 2. Строение молекулы АТФ: 1 — аденин; 2 — рибоза

Типы обмена веществ

Факторы внешней среды имеют различное значение для разных организмов. Растениям для роста и развития необходимы свет, вода, углекислый газ, минеральные вещества. Животным и грибам таких условий недостаточно. Им необходимы готовые питательные органические вещества, а свет для существования некоторых из них не является необходимым условием. По способу питания, источнику получения органических веществ и энергии все организмы делятся на автотрофные и гетеротрофные.

Автотрофные организмы (от греч. autós — сам и trophé — питание) синтезируют органические вещества из неорганических. Фотоавтотрофы используют энергию солнечного света в процессе фотосинтеза. К ним относятся все растения и фотосинтезирующие цианобактерии. Хемоавтотрофы используют энергию, которая выделяется при окислении неорганических веществ (серы, железа, азота) в процессе хемосинтеза. К ним относятся хемосинтезирующие бактерии.

Гетеротрофные организмы (от греч. héteros — иной, другой) получают готовые органические вещества от автотрофов. Источником энергии для них является запасенная в органических веществах энергия, которая выделяется при химических реакциях распада и окисления этих веществ. К ним относятся животные, грибы, многие бактерии.

Процесс автотрофной ассимиляции осуществляется за счет энергии солнечного света или окисления неорганических веществ, а органические вещества синтезируются при этом из неорганических. В зависимости от поглощения неорганического вещества различают ассимиляцию углерода, ассимиляцию азота, ассимиляцию серы и других минеральных веществ. Автотрофная ассимиляция связана с процессами фотосинтеза и хемосинтеза, в результате которых из неорганических веществ синтезируются органические. Этот процесс носит название первичного синтеза органических веществ.

При гетеротрофной ассимиляции организм поглощает органические вещества в готовом виде и преобразует их в собственные органические вещества за счет энергии, содержащейся в поглощенных веществах. Гетеротрофная ассимиляция включает процессы потребления пищи, переваривания ее, усвоения и синтеза новых органических веществ. Этот процесс называется вторичным синтезом органических веществ.

Процессы диссимиляции у организмов также различаются. Одним из них для жизнедеятельности необходим кислород — это аэробные организмы. Другим кислород не нужен, и процессы их жизнедеятельности могут протекать в бескислородной среде — это анаэробные организмы.

Рис. 3. Поток вещества и энергии в биосфере

Большинство организмов являются аэробными. Это все растения, животные (за исключением некоторых паразитов), основная часть грибов и бактерий. Дыхание для них является главной формой диссимиляции. При дыхании богатые энергией органические вещества полностью окисляются кислородом до энергетически бедных веществ — углекислого газа и воды. При этом происходит освобождение энергии, которая используется организмом. Молекулярный кислород, который используется в этих процессах, образуется при фотосинтезе, т. е. автотрофной ассимиляции.

Различают внешнее дыхание и внутреннее. Газообмен между организмом и внешней средой, включающий в себя поглощение кислорода и выделение углекислого газа, а также транспорт этих веществ по организму к отдельным органам, тканям и клеткам, называется внешним дыханием. В этом процессе кислород не используется, а только транспортируется.

Внутреннее, или клеточное, дыхание включает в себя биохимические процессы, которые приводят к освобождению энергии и образованию воды и углекислого газа. Эти процессы протекают в цитоплазме и митохондриях эукариотных клеток или на мезосомах прокариотных клеток.

Другой формой диссимиляции является анаэробное окисление. Процессы энергетического обмена в этом случае протекают по типу брожения. Брожение — это форма диссимиляции, при которой богатые энергией органические вещества расщепляются до менее богатых энергией органических веществ. В этом случае также происходит высвобождение энергии, но значительно меньше.

В зависимости от конечных продуктов различают типы брожения: спиртовое, молочнокислое, уксуснокислое и т. д. Спиртовое брожение встречается у дрожжевых грибов, некоторых бактерий, в растительных тканях. Молочнокислое брожение характерно для молочнокислых бактерий, а также протекает в мышечной ткани животных и человека при недостатке кислорода.

В филогенетическом отношении брожение более древний процесс. Первый этап брожения — гликолиз имеет место у многих аэробных организмов, в том числе у животных и человека.

Анаэробных организмов значительно меньше, чем аэробных. К ним относятся многие микроорганизмы — бактерии и грибы, а также паразитические организмы, вторично утратившие способность к биологическому окислению в связи с образом жизни. Кислородный путь диссимиляции оказался более выгодным в энергетическом отношении. Вспомните, какое количество АТФ запасается на бескислородном и кислородном этапе расщепления, и станет ясно, почему кислородный путь оказался предпочтительным.

Взаимосвязь реакций обмена веществ у автотрофных и гетеротрофных организмов



Через процессы обмена веществ автотрофные и гетеротрофные организмы в природе связаны между собой.

Самыми важными в природе группами организмов являются автотрофы, которые способны синтезировать органические вещества из неорганических. Большинство автотрофов — зеленые растения, которые в процессе фотосинтеза превращают неорганический углерод — углекислый газ — в сложные органические соединения. Зеленые растения выделяют при фотосинтезе кислород, который необходим для дыхания живых существ.

Гетеротрофы усваивают только готовые органические вещества, получая энергию при их расщеплении. Автотрофные и гетеротрофные организмы связаны между собой процессами обмена веществ и энергией. Фотосинтез является практически единственным процессом, обеспечивающим организмы питательными веществами и кислородом.

Несмотря на огромные масштабы фотосинтеза, зеленые растения Земли используют всего 1 % солнечной энергии, падающей на листья.

В последние годы особое внимание привлекает к себе одноклеточная водоросль хлорелла, которая содержит до 6 % хлорофилла и обладает замечательной способностью усваивать до 20 % солнечной энергии. При искусственном разведении хлорелла быстро размножается, а в ее клетке повышается содержание белка. Этот белок используется в качестве пищевых добавок ко многим продуктам. Установлено, что с 1 га водной поверхности можно получать ежедневно до 700 кг сухого вещества хлореллы. Кроме того, в хлорелле синтезируется большое количество витаминов.

Большой интерес ученых к хлорелле связан и с космическими полетами. Хлорелла в искусственных условиях может обеспечить кислородом, выделяемым при фотосинтезе, космический корабль.

Рис. 4. Биологический круговорот веществ. Связь организмов и процессов обмена веществ

Вопросы и задания для самоконтроля

1. Какие две группы реакций составляют обмен веществ?

2. Охарактеризуйте процессы пластического и энергетического обмена.

3. За счет какой энергии идет синтез молекулы АТФ?

4. Назовите основной источник энергии на Земле. Как аккумулируется эта энергия?

5. Почему АТФ можно назвать ключевым источником энергии в реакциях обмена веществ?

6. Каково основное значение дыхания?

7. Какие типы обмена веществ по характеру используемой энергии и источнику получения углерода для синтеза органических веществ существуют на Земле?

8. Почему фотосинтез можно назвать основным процессом, обеспечивающим жизнь на Земле?