Страница 17 из 100
Колебательные контуры применяют и в усилителях высокочастотных колебаний. В отличие от низкочастотных, апериодических усилителей, высокочастотные усилители получили название резонансных. Они усиливают только колебания тех частот, на которые настроены их колебательные контуры. Еще лет десять — пятнадцать назад высокочастотный усилитель вообще нельзя было построить без колебательных контуров — активные элементы, лампы или транзисторы того времени не позволяли этого сделать. Но времена меняются, и с разработкой замечательных высокочастотных транзисторов стало возможным создать усилители, одинаково хорошо работающие в громадной полосе частот — от звуковых до сверхвысоких, например от 300 Гц до 300 МГц! Но такая широкая полоса частот отнюдь не всегда нужна, и тогда по-прежнему широко используют традиционные резонансные усилители с колебательными контурами в каждом каскаде.
Есть еще одно очень важное применение колебательных контуров, собственно, даже и не контуров, а некоторого числа катушек и конденсаторов, включенных по определенной схеме. Система этих элементов образует электрический фильтр. Поговорим о них подробнее, но прежде разберемся, что же общего характерно для всех описанных случаев применения колебательного контура? Ответ дан в заголовке следующего параграфа.
Каскад резонансного транзисторного усилителя.
Резонансные явления в радиоэлектронике характерны для всех цепей, включающих катушки индуктивности и конденсаторы, т. е. реактивные элементы. Реактивный элемент, в отличие от активного простого резистора, способен запасать и отдавать энергию, что и определяет возможность колебательных процессов. Колебательные контуры используют в радиоприемниках, передатчиках, усилителях, фильтрах — т. е. везде, где уже есть электрические колебания, а контур должен откликаться на них. От чего же зависит «мера отзывчивости» колебательного контура (давайте теперь называть его для краткости просто контуром) на внешние колебания? Применив наш испытанный метод аналогий, рассмотрим два примера.
Первый пример — с кораблем. Если корабль накренить, а затем «предоставить самому себе», он не сразу вернется в вертикальное положение. По инерции он пройдет положение равновесия, качнется в другую сторону и, совершив несколько колебаний, примет наконец вертикальное положение. Не обязательно экспериментировать с большим кораблем — можно сделать опыт и с игрушечным корабликом в ванне с водой. Из опыта можно определить и период собственных колебаний, т. е. время, за которое совершается одно полное колебание. Для средних и больших кораблей (не игрушечных, а настоящих, разумеется) период собственных колебаний составляет обычно 5…10 с.
Теперь представьте, что корабль раскачивается набегающими волнами. Если волны мелкие и следуют часто, то большой корабль никак на них не реагирует. Волны лишь плещутся у бортов, не вызывая качки. Другой крайний случай: накатываются очень длинные волны и их период намного больше периода собственных колебаний корабля. Такими волнами могут быть, например, волны цунами. В открытом море их очень трудно, если не сказать вообще невозможно, заметить, настолько они длинны. Корабль очень плавно всплывает на очередную волну и также плавно опускается в ложбину между волнами, и происходит это совсем незаметно для находящихся на корабле. Но этого никак нельзя сказать о жителях побережья, ведь всем известно, какую громадную энергию несут волны цунами и какие разрушения вызывают они на берегу! Не зря же существует служба цунами, предупреждающая о приближении этих разрушительных волн. Получив предупреждение, корабли стараются отойти подальше в открытое море, а жители побережья — эвакуироваться подальше от берега на возвышенные места суши.
Ну а если период набегающих волн равен или близок к периоду собственных колебаний корабля? Вот тут-то все и начинается! Даже если волны не очень большие, корабль сильно раскачивает. Палуба медленно и «муторно» валится из-под ног куда-то вниз и вбок. И только ты приспособился к наклонному положению относительно стен каюты, надстроек, мачт и горизонта, как палуба вдруг подпирает снизу, несет тебя куда-то вверх (при этом внутри что-то сладковато-тошновато замирает), и ты снова без всякой надежды ждешь, когда же, наконец, кончится это изматывающее тело и душу движение! Надеюсь, что я не очень напугал вас, читатель, кратким описанием начинающейся морской болезни. Хотелось лишь подчеркнуть тот факт, что при совпадении периодов внешних и собственных колебаний отклик корабля максимален.
Качка корабля особенно сильна при резонансе.
Другой пример, и одновременно эксперимент. Возьмите грузик и привяжите его на нитку длиной 20…30 см. Держите нитку за свободный конец и покачивайте рукой из стороны в сторону, сначала очень медленно. Качание руки в этом опыте будет внешним воздействием. Следите, чтобы амплитуда внешнего воздействия во всех случаях была одинаковой — достаточно перемещать руку всего на 1…2 см в каждую сторону. При медленном перемещении руки грузик точно отслеживает внешнее воздействие, а нитка всегда остается вертикальной. Заметили этот результат? Теперь убыстряйте движение руки. Частота внешнего воздействия увеличивается, и амплитуда качаний маятника тоже увеличивается, хотя амплитуда внешнего воздействия осталась прежней! Наконец наступает момент, когда маятник раскачивается очень сильно. Амплитуда его колебаний намного превосходит амплитуду внешнего воздействия. Это явление называемся резонансом. Еще увеличьте частоту качаний руки. Амплитуда колебаний маятника заметно уменьшится, а если вы будете двигать рукой очень быстро, с высокой частотой, грузик будет оставаться практически на месте в силу своей инерции.
Экспериментальное наблюдение резонанса.
Проведя физический эксперимент, мы сделали только половину дела. Вторая половина, причем более важная, — осмысление и обработка результатов. Лучше и к тому же нагляднее изобразить результаты эксперимента графически, что мы сейчас и сделаем.
Отложим но горизонтальной оси частоту внешнего воздействия f, а по вертикальной оси — амплитуду колебаний маятника А. При очень низкой частоте внешнего воздействия (медленное движение руки) амплитуда колебаний А равна амплитуде внешнего воздействия В.
При резонансе, когда частота колебаний руки совпадает с собственной частотой маятника f0, амплитуда колебаний максимальна, что хорошо видно на графике. И наконец, когда частота внешнего воздействия намного больше частоты собственных колебаний f >> f0, амплитуда колебаний становится исчезающе малой. То, что мы получили на графике, называется кривой резонанса. Ее неоднократно экспериментально определяли для различных колебательных систем (маятников, мостов, кораблей, электрических цепей) и неоднократно рассчитывали теоретически.
Кривая резонанса.
Существует серьезная и весьма сложная наука теория колебаний, занимающаяся изучением различного рода колебательных движений в механике, гидроакустике, электронике и во многих других областях техники. Любопытно, что столь разнородные колебания описываются одними и теми же математическими уравнениями, что объясняется одинаковым (колебательным) характером движения. Разумеется, рассмотренный нами импровизированный маятник — грузик на ниточке — представляет для теории колебаний наипростейший случай.