Добавить в цитаты Настройки чтения

Страница 21 из 32

Если даны два действительных числа b и х, можно сказать, что z — это логарифм х по основанию b, если b, возведенное в степень z, дает х. Выражаясь математически:

logbx=z↔bz=x.

У логарифмов есть два свойства, которые делают их очень удобными для арифметических операций. С одной стороны, логарифм произведения — это сумма логарифмов, а его частное превращается в разность. Так,

logb(x · y) = logbx+logby, и, кроме того, logb(x/y) = logbx-logby,

что позволяет осуществлять умножение и деление как сложение и вычитание с помощью таблиц логарифмов, которые совсем недавно были знакомы каждому школьнику. Благодаря замене умножения сложением, которую делают возможной логарифмы, ускорилось развитие навигации и торговли; таблицы логарифмов и обратных им величин стали очень популярны. Первую таблицу логарифмов составил в 1614 году шотландец Джон Непер (1550-1617). Математики поняли, что основание логарифма может меняться, благодаря чему стал очень популярным логарифм по основанию е. Это иррациональное число, принимающее значение 2,718182..., было впервые определено Эйлером и присутствует во многих математических выражениях. Число е можно получить как сумму

где n! — факториал натурального числа п.





Логарифмы по основанию е называют натуральными и обозначают In.

В книге логарифмов содержалась также таблица простых чисел, так что острый ум Гаусса начал проверять, нет ли какой-то связи между этими двумя таблицами, и здесь лежат истоки его огромного вклада в теорию простых чисел. Вместо того чтобы прогнозировать точное место простого числа относительно предыдущего, Гаусс попытался понять, можно ли проверить, сколько существует простых чисел, меньших 100, или 1000, или любого другого числа. Есть ли какой-то способ узнать, сколько таких чисел между 1 и N для заданного натурального числа N? Для этого он определил функцию:

π(Ν) = мощность множества {ρ<=Ν, где р — простое число}.

Запись не слишком удачная, поскольку складывается впечатление, что функция каким-то образом связана с числом π, а это не так. Сделав некоторые элементарные вычисления, можно прийти к выводу о том, что простые числа не распределяются равномерно. Например, существует 25 простых чисел, меньших 100; то есть при выборе числа от 1 до 100 у нас есть вероятность 1/4 столкнуться с простым числом. Эта вероятность уменьшается, если мы увеличиваем число Ν. Но следуют ли эти вариации какой-нибудь модели, которую можно выразить математически? Гаусс воспользовался своими таблицами простых чисел, чтобы найти ответ на этот вопрос. Когда он понаблюдал за долей простых чисел, взятых во все больших промежутках, ему показалось, что они следуют некой регулярной структуре. Если мы посмотрим на результат этих наблюдений для различных степеней числа 10, эта регулярность начнет вырисовываться.