Добавить в цитаты Настройки чтения

Страница 18 из 18



7. Измерения Солнца, Луны и Земли

Одним из самых выдающихся достижений астрономии Древней Греции является успешное измерение размеров Земли, Солнца и Луны, а также расстояний от Земли до Луны и Солнца. Успех заключался не в том, что полученные величины были точными – они были далеки от точности. Наблюдения, на которых основывались вычисления, были слишком грубы, чтобы служить верными исходными данными. Но это был первый случай, когда математику использовали правильным образом, чтобы дать количественную характеристику объектам окружающего мира.

Сперва было необходимо понять природу таких явлений, как затмения Солнца и Луны, а также уяснить, что Земля имеет форму шара. И христианский мученик Ипполит Римский, и часто цитируемый философ Аэций, годы жизни которого точно неизвестны, приписывают самое раннее открытие истинных причин затмений Анаксагору, греку-ионийцу, рожденному около 500 г. до н. э. в Клазоменах близ Смирны, который занимался преподаванием наук и философии в Афинах{79}. Возможно, опираясь на подмеченный Парменидом факт, что освещенная сторона Луны всегда обращена к Солнцу, Анаксагор заключил, что «лишь Солнце дарует Луне ее свечение»{80}. Отсюда было естественным заключить, что затмения Луны происходят в те моменты, когда она проходит сквозь тень Земли. Также полагают, что он понял тот факт, что затмения Солнца происходят там, где тень Луны падает на поверхность Земли.

В вопросе определения формы Земли Аристотель продемонстрировал блестящую комбинацию наблюдательности и анализа. Диоген Лаэртский и древнегреческий географ Страбон писали, что еще Парменид задолго до Аристотеля учил, что Земля – это шар, но мы не знаем, как и почему Парменид пришел к такому выводу (если это вообще правда). Аристотель же в трактате «О небе» приводит и теоретические, и эмпирические аргументы в пользу шарообразной формы Земли. Как мы уже видели в главе 3, согласно априорной теории материи Аристотеля, тяжелые элементы, такие как земля и (в меньшей степени) вода, стремятся оказаться в центре мироздания, в то время как воздух или (в еще большей степени) огонь стремятся прочь от него. Земля является шаром, центр которого совпадает с центром всего космоса, потому что это расположение позволяет наибольшему количеству тяжелого вещества оказываться в положенном ему месте, ближе к центру. Аристотель не стал полагаться лишь на один этот аргумент, а добавил эмпирические свидетельства сферической формы земной поверхности. Тень Земли, отбрасываемая на Луну во время лунного затмения, искривлена{81}, и наблюдаемое положение звезд на небе меняется в зависимости от того, путешествует наблюдатель на север или на юг:

«… в затмениях терминирующая линия всегда дугообразна. Следовательно, раз Луна затмевается потому, что ее заслоняет Земля, то причина [такой] формы – округлость Земли, и Земля шарообразна. Во-вторых, наблюдение звезд с очевидностью доказывает не только то, что Земля круглая, но и то, что она небольшого размера. Стоит нам немного переместиться к югу или северу, как горизонт явственно становится другим: картина звездного неба над головой существенно меняется, и при переезде на север или на юг видны не одни и те же звезды. Так, некоторые звезды, видимые в Египте и в районе Кипра, не видны в северных странах, а звезды, которые в северных странах видны постоянно, в указанных областях заходят»{82}.

Подход Аристотеля к математике хорошо иллюстрирует то, что он даже не попытался использовать наблюдения звезд для того, чтобы количественно оценить размер Земли. Кроме этого, я нахожу загадочным то, что Аристотель ничего не говорит о явлении, знакомом каждому моряку. Когда наблюдатель замечает судно в море в ясный день на большом расстоянии, он видит его с «корпусом под горизонтом» – кривизна земной поверхности скрывает все, кроме верхушек мачт удаленного судна. И только по мере приближения далекое судно становится видимым целиком{83}.

То, что Аристотель понял, что Земля имеет шарообразную форму, было немалым достижением. Анаксимандр думал, что Земля имеет форму цилиндра и что мы живем на одной из плоских частей его поверхности. По мнению Анаксимена, Земля плоская, а Солнце, Луна и звезды парят над ней в воздухе, скрываясь от нас иногда за возвышенными частями Земли. Ксенофан писал: «Этот верхний конец земли мы зрим под ногами, // Воздуху он сопределен, а низ в бесконечность уходит»{84}. Позднее и Демокрит, и Анаксагор вслед за Анаксименом думали, что Земля плоская.

Полагаю, что настойчивое возвращение к идее плоской Земли проистекает из очевидной проблемы восприятия Земли шарообразной: если Земля – шар, то почему не падают те, кто перемещается по ее поверхности? Аристотелева теория строения материи давала на это удобный ответ. Аристотель осознавал, что не существует всеобщего направления «вниз», в котором движутся все падающие где-либо предметы. Вместо этого везде на Земле то, что сложено из тяжелых элементов – земли и воды, стремится упасть ближе к центру мира, что и подтверждается наблюдениями.



В этом отношении теория Аристотеля о естественном месте тяжелых элементов в центре космоса работала так же, как и нынешняя теория всемирного тяготения, с одним важным отличием: по Аристотелю, у мироздания был лишь один-единственный центр, а сейчас мы понимаем, что любая достаточно большая масса стремится приобрести форму шара под действием своей собственной силы тяготения и далее притягивает прочие тела в направлении к своему центру. Теория Аристотеля не объясняла, почему что-то еще, кроме Земли, должно иметь форму шара, хотя он знал, что как минимум Луна имеет такую форму, что наглядно видно по смене ее фаз в цикле от новолуния до полнолуния и обратно{85}.

После Аристотеля точка зрения о том, что Земля – шар, стала общепризнанной среди астрономов и философов (кроме отдельных деятелей вроде Лактанция). Мощный ум Архимеда усмотрел сферическую поверхность земного шара даже в стакане воды. В книге первой своего труда «О плавающих телах» он демонстрирует, что «поверхность любой покоящейся жидкости есть сфера, центр которой совпадает с центром Земли»{86}. (Хотя это было бы правдой лишь в отсутствие силы поверхностного натяжения, которую Архимед игнорировал.)

Теперь я перехожу к самому впечатляющему во многих отношениях примеру применения математики в естествознании Древнего мира – работе Аристарха Самосского. Аристарх родился около 310 г. до н. э. на населенном ионийцами острове Самос, учился у Стратона из Лампсака, третьего директора афинского Ликея, и впоследствии работал в Александрии до своей смерти около 230 г. до н. э. К счастью, текст его труда «О величинах и расстояниях Солнца и Луны» сохранился до наших дней{87}. В нем Аристарх основывается как на постулатах на четырех астрономических наблюдательных фактах:

1. «В фазе первой четверти Луны ее угловое расстояние от Солнца на одну тридцатую квадранта меньше, чем целый квадрант». (То есть, когда Луна выглядит как полукруг, угол между направлениями на Луну и на Солнце на 3° меньше 90°, составляя 87°.)

2. «Диск Луны точно закрывает видимый диск Солнца во время солнечного затмения, имея тот же размер».

3. «Ширина земной тени равна двойной ширине диска Луны». (Проще всего это геометрически интерпретировать таким образом: если на место Луны поместить сферу в два раза большего диаметра, чем Луна, она точно заполнит пространство земной тени во время лунного затмения. Возможно, это было определено путем сравнения промежутков времени от момента начала покрытия Луны тенью Земли до полного ее вхождения в тень; пребывания Луны внутри полной тени; от начала выхода Луны из тени до полного окончания затмения.)

Конец ознакомительного фрагмента. Полная версия книги есть на сайте