Добавить в цитаты Настройки чтения

Страница 4 из 7



В «теле» клетки (цитоплазме[41]) находятся молекулы РНК двух других классов, и они оба играют ключевую роль в сборке молекулы белка, кодируемого геном. Одни из них – рибосомные РНК, или рРНК. Они входят в состав клеточной структуры под названием рибосома[42]. Рибосому можно сравнить с конвейером, на котором происходит сборка белка из аминокислот. Другие находятся в «теле» клетки и называются транспортные РНК, или тРНК. Эти молекулы устроены так: с одной стороны находятся три азотистых основания, а с другой – участок для присоединения аминокислоты. Эти три основания на молекуле тРНК могут связываться с парными им основаниями молекулы мРНК. Каждое из возможных 64 сочетаний трех букв триплетного кода (генетического кода[43]) кодирует положение в белке одной из 20 аминокислот, либо «знаки препинания», означающие сигнал начала и окончания биосинтеза белка. В процессе сборки белка на рибосоме в одном «окошке» происходит присоединение определенной молекулы тРНК, несущей на себе новую аминокислоту, к молекуле мРНК. В другом «окошке» сидит тРНК с уже синтезированным обрывком белка. На него перекидывается аминокислота из первого «окошка», и цепь белка удлиняется. В конце концов выстроится полная цепочка аминокислот, расположенных в определенном порядке, и почти готовый белок отсоединится от рибосомы. Последовательность аминокислот – это первичная структура белка, которая определена сообщением, записанным на гене молекулы ДНК. Затем этот белок сворачивается, принимая окончательную форму, и может выполнять свою функцию. Иногда для полного созревания к нему нацепляются цепочки сахаров или липиды.

Интересно отметить, что, хотя на ДНК различных живых организмов, будь то вирус, бактерия, ель, мышь или человек, размещаются разные «сообщения» – гены, все они записаны с использованием одного и того же генетического кода – у всех организмов каждому триплету (последовательности из трех «букв») на ДНК соответствует одна и та же аминокислота в образовавшемся белке. По этой причине мы можем методами генной инженерии заставить работать в клетке кишечной палочки или дрожжей любой ген, скажем, человека или пшеницы.

Очень важное понятие, которое часто встретится вам на страницах книги, – это транскриптом. Транскриптом – это просто совокупность всех матричных РНК данной клетки или организма, проще говоря – полное собрание всех используемых в данный момент в работе клетки инструкций. По изменению транскриптома можно судить о том, какие гены и насколько активны, то есть преобразуются в функциональный продукт – белок.

Как уже говорилось, дезоксирибонуклеиновая кислота (ДНК) – носитель наследственной информации о функциях всех клеток нашего тела. Она составляет основу кольцевых хромосом[44] митохондрий[45] и 46 линейных хромосом ядра[46] человеческой соматической клетки. В отличие от других биомолекул, каждый тип хромосом присутствует лишь в двух копиях на клеточное ядро, а в половых клетках (сперматозоидах или яйцеклетках) каждая хромосома находится вообще лишь в одной копии. Поэтому даже небольшая поломка ДНК в месте расположения жизненно важного гена[47] может стать фатальной. По причине множественного копирования при клеточном делении или под воздействием мутагенных факторов (ионизирующего излучения, свободных радикалов, токсичных веществ) с возрастом происходит накопление повреждений и утрата качества ДНК (рис. 2).

Рис. 2. Виды повреждений ДНК и их репарации.

Повреждения ДНК, как правило, быстро устраняются ферментами репарации, которые исправляют разрывы нити ДНК, удаляют ошибки и заполняют возникшие пробелы в последовательности нуклеотидов[48], используя в качестве матрицы соответствующий участок второй цепочки молекулы ДНК. Однако с возрастом способность к репарации ухудшается. Угасание активности ферментов репарации ДНК является неплохим маркером старения клеток. На это есть несколько причин. Репарация – энергозатратный процесс, она требует большого количества молекулы АТФ («энергетической валюты» клетки), а ее выработка с возрастом снижается из-за дисфункции митохондрий, «энергетических станций» клетки. Упадок биосинтетических процессов приводит к нехватке дезоксинуклеозидов – букв генетического кода, а репарация возможна только при их наличии. Наконец, эпигенетические изменения[49] подавляют активность генов самих репарационных белков. Неустранимые повреждения в ДНК служат причиной мутаций – однобуквенных замен в генетических последовательностях либо удвоений (дупликаций) и выпадений целых участков (делеций) или поломок хромосом (аберраций). Нередко случаются и перемещения генетического материала с одного места на другое – транслокации и транспозиции, вызывающие генетическую нестабильность[50]. Мутации и аберрации являются одной из причин возрастного нарушения функции клетки, гибели клеток или их опухолевого перерождения.

Уровень накопления клетками повреждений, мутаций и хромосомных аберраций служит эффективным маркером скорости старения. Существуют различные лабораторные методы, позволяющие оценить состояние клеток организма (рис. 3).

Рис. 3. Методы оценки количества повреждений ДНК.

Микроядра – патологические структуры внутри клеток, как правило, возникающие вокруг отставших во время деления обломков хромосом. Они выявляются при специальном окрашивании клеток и их анализе под световым микроскопом. С возрастом количество клеток, имеющих микроядра, становится больше, например, среди лейкоцитов[51] крови или клеток кожи. Чем быстрее стареет организм, тем в более раннем возрасте наблюдается увеличение количества таких клеток.

Исследование с помощью люминесцентного микроскопа[52] светящихся (флуоресцентных) ДНК-зондов[53], имеющих сродство к тем или иным участкам хромосом человека, позволяет выявлять тонкие перестройки (транслокации, делеции, дупликации) в каждой из 46 хромосом человеческой клетки. Этот метод получил название FISH-окрашивания хромосом.

Еще один маркер старения – двухцепочечные разрывы ДНК, как правило, вызывающие фатальные для клетки повреждения либо ведущие к генетической нестабильности и опухолевому перерождению. Однако именно их с возрастом становится все больше и больше. Специальное гистохимическое окрашивание (так называемые фокусы гамма-H2AX и 53BP1) позволяет подсчитать под люминесцентным микроскопом число таких разрывов на ядро и тем самым оценить скорость старения изучаемой ткани (в молодых клетках обычно нет таких разрывов, хотя они могут появиться при действии на организм ионизирующей радиации).

При наличии повреждений молекула ДНК становится более подвижной в электрическом поле. Круглое ядро клетки с поврежденной ДНК при электрофорезе[54] становится вытянутым, а мелкие фракции разорванной ДНК формируют при этом «хвост кометы». Чем более выражен хвост, тем более повреждена клеточная ДНК. Данный метод имеет различные модификации, позволяющие полуколичественно (не поштучно, но с помощью конкретного числового показателя) учитывать разные типы повреждений – одно– и двухцепочечные разрывы ДНК, различные окисленные основания ДНК. Наши исследования, проведенные на клетках периферической крови, бравшейся прижизненно у мышей разного возраста, доказали возможность применения данного подхода для оценки интенсивности старения организма. Таким образом, устойчивость к повреждению, как и стрессоустойчивость в целом, в результате старения падает.

41

Цитоплазма – внутренняя среда клетки, кроме ядра, ограниченная плазматической мембраной.

42

Рибосома – немембранная органелла живой клетки, служащая для биосинтеза белка из аминокислот по заданной матрице на основе генетической информации, предоставляемой мРНК.

43

Генетический код – свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.

44

Кольцевые хромосомы – замкнутые в кольцо последовательности ДНК, в которых расположены гены. В клетке человека кольцевые хромосомы во множестве копий находятся в митохондриях.

45



Митохондрии – структуры внутри клетки, отвечающие за выработку энергии (образование большей части АТФ, НАДН), окисление глюкозы, жиров. Источник свободных радикалов. Имеют собственные кольцевые ДНК, рибосомы и транспортные РНК.

46

Структуры внутри клетки, в которых хранится и функционирует основной генетический материал.

47

Ген – структурная и функциональная единица наследственности живых организмов.

48

Нуклеотиды – буквы генетического кода.

49

Модификации ДНК или связанных с ней белков, которые не приводят к изменению генетического кода, однако способны включать или выключать те или иные гены.

50

Множественные изменения локализации, структуры или числа копий генов (или их частей) в геноме клетки или особи.

51

Лейкоциты – белые кровяные клетки, участвующие в реализации иммунитета.

52

Люминесцентный микроскоп – прибор, с помощью которого можно наблюдать свечение окрашенного специальным флуоресцентным красителем объекта при освещении невидимым ультрафиолетовым или синим светом.

53

Меченый фрагмент ДНК, использующийся для гибридизации со специфическим участком молекулы ДНК.

54

Электрофорез – перемещение заряженных молекул или частиц в электрическом поле.