Добавить в цитаты Настройки чтения

Страница 20 из 31



Измерения бывают — непосредственным сравнением, нулевым методом, дифференциальным и методом замещения. Непосредственное сравнение — это когда мы прикладываем калибр к изделию и говорим — не лезет. Нулевой метод — это когда у нас есть что-то, что выдает управляемую и точно (достаточно точно для нас в данном случае) определенную величину. Например, портновский «сантиметр» — мера длины явно изменяемая — когда мы огибаем им, скажем, талию и медленно скользим по нему… по ним… пальцем. Дифференциальный или разностный метод — когда определяют разность между измеряемой и известной величинами. Скажем, прикладывают к столу метровую палку без делений, а потом линеечкой с деленьицами измеряют остаток. А вот в радиоэлектронике измерения часто ведут именно так, потому что сделать точную меру управляемой намного труднее, чем фиксированного размера. А точность измерений при этом очевидно можно увеличить. Наконец, метод замещения — это метод, при котором мы предъявляем прибору по очереди эталон и измеряемую величину и сравниваем показания. Хрестоматийный пример — взвешивания на неравноплечих (неправильно — неравноплечных) весах. Если использовать одно плечо и для объекта и для гирь, то неравно… это самое… перестает сказываться.

Далее, метрологи используют термины «измерительные установки», «системы» и «принадлежности». Слов вокруг этих понятий можно произнести много, но смысл довольно понятен. Принадлежности — нечто «маленькое» — или не все время нужное, или не несущее именно измерительных функций (например, источники питания) или несущее какие-то дополнительные функции, например, накопитель данных или устройство защиты приборов от каких-то вредных влияний. Разумеется, если показать конкретному специалисту конкретный прибор, он, скорее всего скажет, что вот это, вон то и, пожалуй то — принадлежности. Но вопросу несколько удивится — какая разница, как называть? Важно, чтобы работало. На самом деле, прок от этих названий есть — их наличие позволяет как-то структурировать материал, облегчает как изложение, так и усвоение.

Далее, измерительные установки — это нечто большее, чем отдельный прибор, измерительные системы — нечто еще большее. Разумно будет сказать, что измерительная установка — это несколько приборов, измеряющих несколько параметров объекта. Иногда добавляют — расположенных в одном месте. Но понятие «одно место» определено не вполне четко (в технике!). С другой стороны, легко представить себе «один прибор», то есть расположенный в одном корпусе, имеющего одно наименование, измеряющий, в том числе и одновременно несколько величин. Одно слово «мультиметр» чего стоит. Правда, определение можно сузить, потребовав одновременности измерений, но цифровые осциллографы измеряют одновременно много параметров.

Измерительные системы несут еще какие-то функции, помимо собственно измерений, например накопление данных, сложную обработку данных (естественный вопрос — что такое «сложная»?), управление объектами, или расположены не в одном месте. Обычно добавляют, что в таких системах есть компьютер, но во-первых, это не принципиально, а во-вторых, нынче в каждом втором тестере по компьютеру, а в каждом третьем — по два :)

Измерения и приборы классифицируют по месту применения и делят на лабораторные, производственные и полевые. Понятно, на чем это сказывается. Для измерений, при прочих равных условиях, на качестве, то есть надежности, разбросе, точности. Для приборов — на пылебрызгозащищенности, вибро- и ударопрочности, а также на возможности работы, когда блоки загоняют на место сапогом, а бычки гасят о шкалу прибора. Чтобы было неповадно показывать глупости. Разумеется, это деление условно, как и все остальные. Все деления условны. «Все, что написано в этой книге — гнусная ложь» («Колыбель для кошки», и не вздумайте сказать, что автора не помните, кто ошибку в цитате заметил — плюс балл на экзамене).

При большом количестве измерений возникает естественная проблема автоматизации измерений. Понятие автоматизации можно трактовать по-разному, шире и уже, и если любую обработку результата (не исходного сигнала) считать автоматизацией, то автоматическим будет любой цифровой прибор, автоматически выбирающий диапазон измерений. Со временем обработка информации усложняется и во многом совершенствуется, человеку начинает казаться, что приборы делают все сами. Это опасный самообман, причем по двум причинам. Во-первых, любое устройство может выйти из строя, в том числе устройство для резервирования, контроля, ремонта — тоже. При отсутствии иных ограничений может быть получена любая надежность, но в конкретных условиях она определяется психологией человека — балансом между другими параметрами системы (например, стоимостью), допустимым риском и эффективностью функционирования; в любом случае, ясное представление о степени надежности машинной подсистемы увеличивает надежность системы человек-машина.

Во-вторых, сложная обработка чревата — см. выше абзац, начинающийся словами «Как указано выше, в интерпретации данных, полученных с высокой точностью, есть одна опасность. Когда мы получаем много цифр, то возникает соблазн поискать закономерности. А при увеличении объема анализируемых цифр что-нибудь да найдется». Так вот, есть опасность найти то, чего нет. Другое дело, что эта опасность больше у социолога, меньше у физика и совсем мала у инженера — ибо он чаше всего получает уже верифицированную и многажды испытанную метрологическую методу. Но все же, как пел Цой: «следи за собой, будь осторожен».





Эталоны и их «точность»

Эталон — это нечто, что реализует единицу измерения (в физике и технике) или свойство (в технике: цвет краски, вкус продукта). Эталон может быть в принципе использован двумя способами. Предъявляя эталон прибору, мы проверяем прибор. Сравнивая эталон с другим эталоном, причем присваивая значение второму по информации о первом и данных прибора сравнения, мы создаем подчиненный эталон (например, национальный по мировому). Сравнивая два эталона одного ранга (два мировых, два национальных), мы не присваиваем значения, но по данным прибора сравнения можем определить, изменилась ли разница между эталонами. оценить стабильность и косвенно — точность.

В социологи ситуация иная — эталонов нет. Нет эталонного города, эталонной страны, эталонной группы студентов или эталонного электората. Соответственно, нет очевидного и резкого деления на «высокую метрологию», занимающуюся эталонами и поверкой, и «полевую» метрологию, которая берет штангенциркуль и того, меряет. Хотя конечно, от осознания принципов функционирования общества до вопроса «какие чипсы вы предпочитаете» дистанция не маленькая.

А вот в психологии ситуация ближе к физике и технике — у них нет эталонного человека (или эталонной «малой группы») но у них есть представление о «норме». Частично оно интуитивно, частично базируется на показаниях приборов — нормальный человек имеет IQ 100 и те или иные показатели по другим основным тестам.

Метрологию можно разделить на две — «высокую метрологию» и «полевую метрологию». Полевая метрология — это сами измерения и их обработка (то есть то, чем занимаются все физики и технари) и разработка приборов и методов измерений (то есть то, чем занимаются прибористы при участии физиков и технарей). Но для разработки приборов нужны эталоны. Вот всем, что касается эталонов, занимается «высокая метрология». В ней, как это ни дико звучит, вообще нет понятия «точность» — ибо точность относительно чего? Раньше метрологи поступали так: изготавливали несколько «метров» или «килограммов» и объявляли один главным, мировым эталоном. Это снимало задачу определения «точности» с остальных эталонов. Но эта проблема оставалась для одного, главного эталона, а кроме того, всякий понимал, что коронация именно этой гири ничем не оправдана — все гири одинаковы. Логичнее было бы принимать за «эталон» среднее значение, то есть считать, что в среднем гири-эталоны не изменяют массу. Это логичнее (нет случайного выбора), но с точки зрения физики, глупо: уж если мы обнаружили, что изменяется масса платиноиридиевых гирь, причем и разных — по-разному и мы не знаем как следует, почему, то откуда мы знаем, что не изменяется в среднем?