Добавить в цитаты Настройки чтения

Страница 80 из 86

      – Так, поподробнее, пожалуйста, – оживился Хрущёв. – Это вы сейчас о каком реакторе?

      – Малый ампулизированный реактор для подводных лодок, – ответил Александров. – В первом контуре у него натрий, во втором – свинец. Первый и второй контуры баковой конструкции, вставленные друг в друга, представляют собой ампулизированный герметичный контейнер. Он помещён в третий бак, с водой, которая кипит и вырабатывает пар для турбины. Получилась очень компактная и достаточно безопасная схема. Никаких узких каналов в реакторе нет. Температура плавления натрия примерно 98 градусов Цельсия. Давление внутри – одна атмосфера. Застывший натрий при включении реактора быстро плавится, а до кипения не доходит. Когда температура доходит до 328 градусов, начинает плавиться свинец второго контура, в это время вода в третьем контуре уже кипит. Никаких парогенераторов, которые могут протекать, не нужно, пар образуется прямо в реакторе. Условно говоря – кастрюля-пароварка, у которой тепловыделяющий элемент находится внутри.

      – Заглушенный реактор медленно остывает, причём сначала застывает свинец, полностью запечатывая контейнер, а натрий внутри ещё продолжает циркулировать в жидком виде. Вся циркуляция обеспечивается естественной конвекцией жидких металлов, то есть, никаких постоянно шумящих насосов нет, лодка получится тихая. Насосы только подают водяной конденсат обратно в третий контур реактора.

      – Когда ядерное топливо в реакторе окончательно выгорает, внутренняя ампула остывает, её вынимают и захоранивают, на её место ставят новую. Выдвигают регулирующие стержни, и цикл повторяется. Сейчас идут эксперименты, мы учимся управлять реактором, разбираемся, как он себя ведёт на разных режимах.

      – А вы не думали заменить свинец во втором контуре чем-то более легкоплавким? – спросил Лейпунский. – Хотя бы свинец-висмутовой эвтектикой? А я бы вообще ртутью заменил. Сделать корпус второго контура чугунным, ртуть его не разъест.

      – У нас есть противопоказания по использованию висмута, правда, в первом контуре, – возразил Александров. – Насчёт использования его во втором контуре – это ещё проверять надо. Ртуть на подводную лодку я категорически не хочу тащить.

      – Да и натрий на подводной лодке... Ох, мужики, страшно мне что-то... – пробормотал Хрущёв.

      – Никита Сергеич, натрий надёжно заперт внутри тройной оболочки, – успокоил Ефим Павлович Славский. – Оболочка первого контура, слой свинца, потом оболочка второго контура. Не вырвется. Ну, и, конечно, пока все нюансы не отработаем, на лодку его не поставим.

      – Тут, Никита Сергеич, надо понимать ещё один момент, – добавил Курчатов. – На этом реакторе мы можем относительно дёшево экспериментально отработать и понять те нюансы использования свинцового теплоносителя, которые потом можно будет развить в проекте БРЕСТ. Та схема, которая предложена в концепте БРЕСТ (http://www.atomic-energy.ru/technology/36000) весьма сложна для постройки по ней опытного реактора. Наша ампулизированная баковая схема проще.

      – М-да... Ну, хорошо. Допустим, – Первый секретарь теперь выглядел обеспокоенным. – Насчёт урана-233 хотел спросить. Вот, ваша РУНА-Т будет его нарабатывать в больших количествах, так?

      – Да, – подтвердил Векслер.

      – И куда мы его девать будем? Я имею в виду – прямо сейчас? У нас что, есть готовые варианты его использования?

      – Вообще-то есть, – ответил Курчатов. – Я специально пригласил директора комбината «Маяк» Федора Яковлевича Овчинникова.

      Овчинников поднялся со своего места в конце стола. Никита Сергеевич отметил, что директор «Маяка» ещё совсем молодой, с широкой, располагающей улыбкой.





      – Мы, товарищ Хрущёв, сейчас заканчиваем на комбинате монтаж уникальной, полностью автоматизированной производственной линии из гибких производственных ячеек, – начал Фёдор Яковлевич. – Товарищ Щёлкин разработал универсальный малогабаритный боеприпас, который на этой линии будет собираться серийно, в больших количествах. Новый реактор-ускоритель позволяет получать расщепляющиеся материалы значительно дешевле, чем раньше. Раньше мы уран-238 тысячами тонн в центрифугах крутили, пока там от него уран-235 отделишь... Электричества эти центрифуги расходуют – море! Потом этот уран надо в реакторе жечь, чтобы 238-й уран перевести в плутоний. А плутоний, это такая гадость... летучая, ядовитая, радиоактивная... И стоит дороже золота. Кирилл Иваныч, вы про свой ядерный запал расскажите поподробнее.

      Академик Щёлкин поднялся, развернул несколько сложенных в трубку плакатов и повесил их на демонстрационную стойку, один на другой. Хрущёв с интересом разглядывал устройство, по форме напоминающее орех арахиса (картинка и описание https://ru.wikipedia.org/wiki/W88)

      – Это – законченный вариант термоядерного боеприпаса, предлагаемого для наших новых баллистических носителей, выполненного по двухступенчатой схеме Теллера-Улама, – сказал Щёлкин. – Отличие нашей совместной товарищами Харитоном и Зельдовичем разработки в том, что элементы из плутония и урана-235 в ней заменены на элементы из урана-233. Основная мощность взрыва, как и раньше, достигается в результате реакции слоёных оболочек из дейтерида лития-6, но инициация производится подрывом не плутониевого, а уранового заряда. Вот этого овального элемента в верхней части. Вот это и есть тот универсальный «ядерный запал», который будет производиться на автоматизированной сборочной линии комбината «Маяк», и который так долго нам не давался. Его мощность составит от пяти до десяти килотонн в тротиловом эквиваленте, в зависимости от того, сколько смеси дейтерия и трития положено вот тут, в центре. Это – микротермоядерный заряд, он служит исключительно для более полного «сгорания» урана.

      – То есть, этот запал сам по себе – уже маленькая атомная бомба, – уточнил Хрущёв.

      – Да, именно.

      – А почему он вам долго не давался?

      – Форма, Никита Сергеич, – пояснил Щёлкин. – Форма и критическая масса. Все наши заряды ранее делались круглой формы. Поэтому у нас долго не получалось сделать бомбу малого диаметра. Меньше 300 миллиметров. Реально первые термоядерные слойки были по полтора метра в диаметре. Миллиметров 400-500 инициирующий заряд, ведь плутоний в нём надо окружить обычной взрывчаткой, в оболочке, со взрывателями. Вокруг него наворачивались слои дейтерида лития, всё это хозяйство было ещё в оболочке из урана-238 или свинца.

      – Когда мы в апреле 1956 года получили от Игоря Васильевича первые сведения о заряде овальной формы, было много споров, сомнений, боялись, что эта штука вообще не сработает. Наконец, в 1957-м году провели первое испытание такого заряда. Неудачно. Не смогли обеспечить одновременность подрыва обычной взрывчатки, ошибка в проектировании системы подрыва имплозивных линз инициатора. Второе испытание – получилось, помните, я вам докладывал про «термоядерный горох», что мы для флота сделали? А потом эти заряды ставили на Р-7 с «самосвалом» (АИ, см. гл. 02-39)

      – Помню, конечно! – заулыбался Хрущёв.

      – Вот. Овальная форма позволила уменьшить диаметр инициирующего заряда. Теперь его можно поместить в калибр 204 миллиметра. Мы продолжаем работать над уменьшением калибра, с плутонием, думаю, получится и в 152 миллиметра уложить, но с плутонием получится дороже.

      – Основное преимущество нашего заряда с ураном-233 – то, что стоимость расщепляющегося вещества, получаемого в реакторе-ускорителе товарища Векслера значительно, в несколько раз дешевле, чем стоимость плутония.

      – Это почему? – уточнил Никита Сергеевич.

      – Дешёвое, распространённое сырьё – торий. Его коэффициент воспроизводства в тепловых реакторах больше или равен единице, то есть, сколько тория в реактор загрузили, столько урана-233 получили. В случае наработки в реакторе-ускорителе дело обстоит ещё лучше. Это раз. Отсутствие этапа обогащения урана в центрифугах – два. Не надо долго мариновать в реакторе уран-238, переводя его в плутоний – три. Процесс в реакторе-ускорителе идёт значительно быстрее, при этом на единицу затраченной энергии, по сравнению с обогащением в центрифугах, конечный выход расщепляющегося вещества в реакторе-ускорителе в разы больше. При этом из получаемого урана-233 можно делать не только бомбы, но и ТВЭЛы для атомных электростанций.