Добавить в цитаты Настройки чтения

Страница 129 из 138



При химических реакциях атомы вступают в связь, оставаясь внутри молекулы неизмененными. При атомных или ядерных реакциях ядра атомов перестраиваются сами и дают новый атом с совершенно новыми химическими свойствами.

Химические реакции выражают формулами вида

2С+О2->2СО.

Это означает, что два независимых друг от друга атома углерода, соединившись с молекулой кислорода, состоящей из двух его атомов, дают в результате две молекулы окиси углерода, обозначаемой СО.

Сходные обозначения применяются для описания ядерных реакций.

Алхимики прежних времен долго искали «философский камень» - способ превращать в золото малоценные металлы. Их труды были тщетны, их мечты не сбылись, атомы не желали в их руках превращаться друг в друга, но в XX зеке наука обнаружила, что с некоторыми атомами эти «чудеса» происходят сами по себе, только золота при этом не получается. Так, например, атомы радиоактивных элементов урана и тория испытывают длинный ряд превращений в другие атомы. Эти необыкновенные превращения атомов урана и тория сопровождаются выбрасыванием из их недр ядер более легкого вещества - гелия и возникновением электронов и очень коротковолновых «жестких» (с малой длиной волны) электромагнитных лучей, называемых γ-лучами. В конце концов уран и торий превращаются в свинец.

Ядра атомов гелия или α-частицы (летящие со скоростью около 20 000 км/сек) оказались теми снарядами, которыми ученые смогли разрушить ядра некоторых других атомов и вскрыть для нас их природу. Налетая с большой скоростью на них, α-частицы разбивали эти ядра и образовывали из осколков новые химические элементы. Для этого надо было эти α-частицы добыть и направить в нужное место. Так английский физик Резерфорд в 1919 г. осуществил мечту алхимиков об искусственном превращении элементов.

Столкнув ядро гелия 2Не4 с ядром азота 7N14, ему удалось превратить их в два других ядра: водорода и кислорода, правда, в форме редкого изотопа с атомным весом 17. Но ведь от этого, как мы уже знаем, кислород не перестает быть кислородом!

Это чудесное превращение можно записать формулой

7N14+2H4->8O17+1H1.

Обратите внимание, что суммы значков как верхних, так и нижних в правой и левой частях этого уравнения равны.

Альфа-частицы поставляются радиоактивными атомами, но еще более «бронебойные», лучше сказать, «ядернобойные» снаряды получаются от искусственно получаемых и разгоняемых протонов и ядер тяжелого водорода (дейтронов).



Для этой цели служат мощные ускорительные установки: циклотроны, линейные ускорители, синхроциклотроны, бетатроны, синхрофазотроны. С их помощью протоны, дейтроны и электроны разгоняются до огромных энергий, сравнимых с энергией космических лучей.

Нейтроны, не имеющие заряда и не отталкиваемые ядрами, еще лучше проникают в их недра и действуют еще разрушительнее. Пригодны для этой цели и «жесткие» γ-лучи

За последние годы было искусственно произведено множество ядерных реакций. Из них особый интерес представили те, которые привели к новым радиоактивным ядрам. Новые ядра оказались крайне неустойчивыми, распадающимися уже самопроизвольно (т. е. без всякого внешнего воздействия, под влиянием внутренних причин) и очень быстро, отчего они и не встречались в природе. В конце концов у каждого элемента был найден один или несколько радиоактивных изотопов. Однако большинство этих «искусственных» радиоактивных ядер излучает не α-частицы, а выбрасывает только электроны либо позитроны.

При искусственном преобразовании элементов, связанном с разрушением ядер, разрушающая частица необходимо должна иметь большую энергию, она должна нестись быстро, и этот разгон ей придается в лаборатории искусственно созданным электрическим полем. В природе же необходимую для разрушения ядер скорость разрушающим частицам дает высокая температура. Повышение температуры газа, как известно из физики, приводит к более оживленным движениям составляющих его молекул или атомов. Их скорости можно вычислить, зная температуру газа, а отсюда, зная массу атомов, легко определить энергию их движения, которая потом идет на работу разрушения ядер.

Конструкторы бронебойного оружия, зная массу пули, рассчитывают ту скорость, которую ей надо сообщить, чтобы она могла пробить броню, заданной толщины. Подобно этому, мы можем рассчитать температуру, при которой энергия движения разрушающих частиц достаточна для проникновения их в недра атомных ядер.

Например два протона, несущихся навстречу друг другу, могут преодолеть взаимное отталкивание (усиливающееся при сближении) лишь при скорости, обусловленной температурой в 55 млн. градусов. Где же могут быть такие температуры?! Их нет не только в лаборатории, но и на поверхности звезд. Лишь в их недрах можем мы ожидать найти такие температуры, и к этому нас приводили любые теории внутреннего строения звезд еще задолго до того, как мы стали разбираться в ядерных реакциях. Там, в этих таинственных и невидимых недрах, вес вышележащих слоев звездной материи создает чудовищное давление и высокую плотность газа. В адской тесноте бешено носящиеся частички сталкиваются друг с другом и «обламывают друг другу бока» в том смысле, что уж внешние-то части атомов, т. е. их электронные оболочки, непрерывно от них отрываются. При этих температурах и давлениях ядра всех легких атомов должны обнажиться, так что в образовавшейся туче обломков оторванных, свободных электронов еще больше, чем ядер. Кому-нибудь из них удастся подхватить пролетающий мимо электрон, но ненадолго. Следующее же столкновение возвращает атомное ядро к его одиночеству. В земных и лабораторных условиях оболочки из внешних электронов, как щит, отчасти защищают ядра от роковых столкновений, в недрах же звезд только взаимное отталкивание служит этому помехой. Лучше всего защищены от ударов ядра тяжелых элементов, у которых большой заряд ядра и поэтому большая отталкивательная сила.

Интересно отметить следующее свойство этого как бы «искрошенного» вещества, составляющего самые недра звезд. При вычислении величин, характеризующих разные физические условия и события в недрах звезд, играет важную роль средний атомный вес частиц, их образующих. Казалось бы, он должен сильно зависеть от пропорции разных химических элементов, потому что атомный вес водорода 1, а урана 238. Это как будто напоминает задачу о среднем весе неизвестных фруктов в закрытой корзине, где могут быть и вишни, и яблоки, и арбузы. Однако при полной ионизации атомов в недрах звезд каждый из них раскалывается на Z+1 частицу (1 ядро и Z электронов), если атомный номер атома равен Z. Тогда атомный вес смеси атомных обломков получается не А, а А:(Z+1) и, например, для чистого водорода составляет 1/2, а для чистого урана 2,6.

Таким образом, незнание точного химического состава звездных недр мало влияет на оценку величины среднего атомного веса частиц. Тяжелых атомов там не может быть очень много, и главную роль играет то или иное содержание водорода. Ряд данных заставляет считать, что Солнце по крайней мере на 50% состоит из водорода (по массе) и, следовательно, ввиду легковесности водородных атомов они составляют там подавляющее большинство, так что средний атомный вес в звездных недрах должен быть близок к 1.

Для того чтобы рассчитать скорость и действенность ядерных реакций в таком газе, надо знать структуру атомов, законы, действующие в их недрах, и притом все в численном виде, пригодном для математических расчетов, иначе мы будем иметь дело не с научной теорией, а с простыми предположениями.

Прелсде всего нужно ответить на вопрос, что произойдет с частицей, влетевшей в ядро. Оказывается, иногда частица может попросту пролететь сквозь ядро. Далее, ядро может удержать проникшую в него частицу, отдав принесенную ею энергию путем излучения v-лучей. Наконец, ядро, в которое проникла частица, может распасться, как в одной из реакций, описанных выше.

При разнообразии структуры ядер как своего рода крепостей можно ожидать большого разнообразия в типах столкновений и их последствий; опыты подтверждают эти ожидания и указывают, что для каждого данного типа ядер некоторые скорости столкновения для достижения желаемого результата благоприятнее, чем другие. Например, реакции, при которых сложное ядро, образовавшееся из двух столкнувшихся ядер, разломится на две (далеко не равные) части, гораздо вероятнее, чем реакции, при которых из сложного ядра выбросится только электрон или γ-луч.