Добавить в цитаты Настройки чтения

Страница 67 из 82

Углекислый газ является парниковым в силу квантовых эффектов

Почему углекислый газ создает столь серьезную парниковую проблему? Другими словами, почему он удерживает тепло в атмосфере? И почему водяной пар (молекулы воды в газообразной фазе, находящиеся в атмосфере) является еще более серьезным парниковым газом, чем CO2? Содержание в атмосфере водяного пара определяется испарением и конденсацией воды. Земные океаны представляют собой огромный резервуар воды, из которого она испаряется в атмосферу. С дождями, росой и снегом вода покидает воздух. Человек мало влияет на количество находящейся в воздухе воды, однако если Земля продолжит нагреваться, насыщенность атмосферы водяным паром возрастет. Это еще более усугубит парниковый эффект, связанный с выбросами CO2, поскольку H2O — это очень мощный парниковый газ. Мы, однако, можем влиять на количество CO2 в атмосфере, выбирая источники энергии и повышая эффективность их использования. Серьезная роль CO2 и водяного пара как парниковых газов напрямую вытекает из квантовой теории.

Чернотельный спектр Земли

В главах 4 и 9 мы обсуждали чернотельное излучение. На рис. 9.1 изображен чернотельный спектр Солнца, температура поверхности которого составляет чуть менее 6000 °C. Такое черное тело излучает значительную часть энергии в видимой области спектра, а также существенное ее количество в ультрафиолетовом и инфракрасном диапазонах. Цвет испускаемого горячим предметом излучения зависит от его температуры. Горячие объекты испускают более короткие волны. Земля, конечно, намного холоднее Солнца. Тем не менее и она является чернотельным излучателем, но испускает гораздо более длинные волны (менее энергичные фотоны). Солнечный свет со спектром, изображенным на рис. 9.1, падает на Землю. Часть этого света отражается обратно в космос льдом и другими светлыми объектами на поверхности. Однако значительная часть световой энергии превращается в тепло, согревающее Землю. Чернотельное излучение Земли уносит в космос часть поступающей от Солнца энергии.********

В верхней части рис. 17.1 изображены три расчетных чернотельных спектра Земли для трех температур. Эти три кривые нормализованы так, чтобы в максимуме все они имели значение 1. 15 °C — это средняя температура поверхности Земли, 27 °C — температура поверхности в тропиках, а –16 °C — в субарктических регионах. Хотя кривые немного различаются, в целом они очень похожи. При обсуждении роли углекислого газа эти различия несущественны.

Рис. 17.1. Вверху: расчетные чернотельные спектры Земли для трех температур (сплошные кривые). Выделенные области соответствуют участкам спектра, в которых происходит сильное поглощение содержащимися в атмосфере водяным паром и углекислым газом. Посередине и внизу: спектры сильного поглощения углекислым газом и водяным паром в диапазоне от 0 до 1000 см–1. Обратите внимание, что здесь шкала отличается от использованной на верхнем графике

Поглощение земного чернотельного излучения

Нижние два спектра на рис. 17.1 (обратите внимание, что шкала отличается от шкалы верхнего спектра) показывают влияние углекислого газа и водяного пара на пропускание атмосферой инфракрасного излучения в длинноволновой части спектра. Пропускание, равное единице, означает, что весь свет проходит сквозь атмосферу. Нулевое пропускание означает, что свет полностью поглощается в атмосфере. Эти спектры меняются в зависимости от региона Земли, где они измеряются. Приведенные кривые дают о них лишь общее представление. Кроме того, на них опущена сложная тонкая структура (пики и впадины), особенно в спектре водяного пара. Смысл этих кривых в том, чтобы показать наиболее существенные особенности поглощения инфракрасного излучения углекислым газом и водяным паром в области, на которую приходится основная часть земного чернотельного спектра. Эти области поглощения показаны тоном и штриховкой на верхнем графике. Водяной пар также вызывает значительное поглощение в районе 1750 см–1; эта область тоже отмечена. Инфракрасное поглощение мешает части земного чернотельного излучения уходить в космос. Без этого атмосферного поглощения Земля была бы намного холоднее.





Почему углекислый газ так важен?

Причину, по которой углекислый газ настолько важен, можно понять, присмотревшись к выделенному тоном участку чернотельного спектра и спектру поглощения. Водяной пар поглощает практически все более длинноволновое излучение, чем 500 см–1. Однако два нижних спектра на рис. 17.1 показывают, что углекислый газ поглощает излучение как раз в той области, где водяное поглощение незначительно. Полоса поглощения углекислого газа лежит очень близко к пику спектра земного чернотельного излучения, и, как видно на верхнем графике рис. 17.1, это не зависит от того, какова температура земной поверхности. Таким образом, углекислый газ вызывает сильное поглощение земного чернотельного излучения в важном спектральном диапазоне, где другие составляющие атмосферы, в частности водяной пар, не проявляются. На спектре поглощения углекислого газа (средний график на рис. 17.1) видно, что в середине полосы поглощения вокруг частоты 667 см–1 пропускание близко к нулю. Однако с увеличением концентрации CO2 область очень сильного поглощения становится шире, а в части спектра, где пропускается лишь несколько процентов, излучение вовсе перестает уходить с Земли в космос. Итак, CO2 вызывает сильное поглощение вблизи пика земного чернотельного излучения, где у водяного пара нет такого эффекта, а с ростом концентрации CO2 атмосфера будет удерживать в ловушке больше чернотельного излучения, вызывая нагрев планеты.

Почему углекислый газ поглощает именно в этой области?

Мы видим, что углекислый газ захватывает инфракрасное излучение вблизи пика земного чернотельного излучения и что увеличение концентрации CO2 пагубным образом сказывается на температуре Земли. Но почему CO2 поглощает инфракрасное излучение именно вблизи частоты 667 см–1? В главах с 8-й по 11-ю мы обсуждали энергетические уровни частицы в ящике, атома водорода и всех остальных атомов. В главах с 12-й по 14-ю мы обсуждали молекулярные орбитали и связанные с ними энерге­тические уровни. Весь этот разговор вращался вокруг энергетических уровней для электронов. На основе представления о молекулярных орбиталях объяснялась природа химических связей, которые удерживают вместе атомы в молекулах. Однако мы не говорили о движениях атомов, которые соединены химическими связями в молекулы.

На рис. 12.1 изображена кривая потенциальной энергии для молекулы водорода H2. Эта кривая показывает, что энергия меняется в зависимости от расстояния между двумя ядрами атомов водорода. Длина химической связи — это расстояние, на котором энергия достигает минимума. Однако это связь не является жесткой. Если думать о ней в терминах классической механики, то связь — это пружина с двумя грузами — атомами водорода, присоединенными к ее концам. Пружина может растягиваться и сжиматься. В классической системе, если растянуть пружину и отпустить ее, грузы начинают колебаться, вызывая попеременное растяжение и сжатие пружины. В случае классического осциллятора грузы будут колебаться вперед-назад по хорошо определенной траектории. Опираясь на квантовую теорию, мы сразу должны заподозрить, что у квантовых колебаний не может быть такой хорошо определенной траектории, иначе это означало бы, что мы точно знаем и положение, и импульс частиц (атомов). Для абсолютно малых систем, таких как атомы, связанные в молекулу, это нарушало бы принцип неопределенности Гейзенберга.

Рис. 17.2. Вверху: шаростержневая модель молекулы углекислого газа CO2. Внизу: три различные колебательные моды молекулы. Имеется две деформационные моды: одна из них изображена, а еще одна такая же связана с движением атомов в направлении, перпендикулярном плоскости страницы