Добавить в цитаты Настройки чтения

Страница 13 из 82

Фотон находится в этой суперпозиции трансляционных состояний T = T1 + T2, поскольку именно это о нем известно. Он с 50-процентной вероятностью находится в первом плече (T1) и с 50-процентной вероятностью — во втором (T2). Борновская интерпретация волновой функции заключается в том, что это не реальная волна в смысле амплитуды колеблющегося электромагнитного поля. Правильнее говорить, что волновая функция описывает «амплитуду вероятности волны». Ошибочная интерпретация волновой функции в терминах фотонов состоит в том, что она якобы говорит, сколько фотонов находится в каждом плече прибора, то есть сколько фотонов пребывает в некоторой области пространства. Правильная интерпретация состоит в том, что волновая функция фотона говорит о вероятности обнаружения фотона в этой области пространства.

Может показаться, что различие между ошибочной и правильной интерпретациями незначительно, однако, как подробно объясняется далее, оно фундаментально меняет наше представления о природе. В классическом описании света его интенсивность пропорциональна абсолютному значению квадрата амплитуды электрического поля, которая, в свою очередь, задается амплитудой волновой функции. В борновской интерпретации возведенная в квадрат абсолютная величина волновой функции для определенной области пространства дает вероятность обнаружения частицы, в нашем случае фотона, в этой области пространства.

Фотон интерферирует сам с собой

При попадании фотона на разделитель пучка рождаются две ­волны амплитуды вероятности: одна в первом плече, другая — во втором. В целом волна амплитуды вероятности T является суперпозицией волн амплитуды вероятности T1 и T2. Встретившись с разделителем, каждый отдельный фотон попадает в состояние T1 + T2. Поскольку за разделителем есть две волны амплитуды ­вероятности, они пересекаются в области перекрытия. С одиночным фотоном внутри интерферометра связаны две волны — T1 и T2. Интерференция этих двух волн определяет высокую вероятность обнаружить фотон вблизи пика интерференционной картины и низкую вероятность обнаружить фотон вблизи ее нуля. Фотон интерферирует сам с собой, поскольку в интерферометре он состоит из двух волн, и эти две волны могут интерферировать друг с другом. Так как после прохождения разделителя пучка каждый отдельный фотон попадает в состояние суперпозиции T1 + T2, снимается проблема, связанная с низкой интенсивностью света. Одиночный фотон, входя в прибор, порождает две волновые функции, две волны амплитуды вероятности в интерферометре. Поэтому всегда есть пара волн, порождающих интерференционную картину.

Фотон может находиться в двух местах сразу

Первая естественная реакция человека с классическим мышлением на борновскую интерпретацию: «Это безумие какое-то!» Мы что, действительно верим, будто один фотон может находиться в двух местах сразу? После разделителя пучка порождается состояние T1 + T2. Это состояние означает, что в некотором смысле фотон одновременно находится в обоих плечах прибора. Если поместить детектор в плечо 1, чтобы посмотреть, сколько там света, то обнаружится, что туда прошла половина света. Однако это не та информация, которая нам нужна. Возможно, половина фотонов пошла по каждому плечу, и мы видим эту половину, или, возможно, имеется 50-процентная вероятность того, что каждый фотон прошел в каждое плечо. В этом случае мы тоже увидим половинную интенсивность. Правильный эксперимент состоит в использовании настолько слабого света, что в каждый момент внутри прибора находится лишь один фотон.

Рассмотрим эксперимент, в котором интерферометр обстреливается одиночными фотонами. Будем использовать фотодетектор, настолько чувствительный, что он способен зарегистрировать отдельный фотон. Это легко достижимо с помощью научного эквивалента цифровой суперкамеры. Поместим детектор в первое плечо интерферометра. Фотон входит в прибор, и мы регистрируем его. Мы наблюдаем фотон целиком, а не его половину. Другой фотон входит в прибор, но мы его не видим. Пять фотонов входит в прибор. Мы регистрируем два из них, а остальные три не замечаем. Продолжая в том же духе достаточно долго, мы обнаруживаем, что детектор в левом плече прибора регистрирует 50% фотонов. Мы также видим, что никакой интерференционной картины не возникает. Фактически наблюдается одно светлое пятно (без периодически меняющегося рисунка) в той области, где раньше возникала интерференционная картина.





Наблюдение вызывает непренебрежимо малое возмущение, приводящее к изменению состояния

Что же происходит? Попадая на разделитель пучка, фотон оказывается в состоянии суперпозиции T1 + T2. Однако фотоны — это частицы, малые в абсолютном смысле. Акт их наблюдения вызывает непренебрежимо малое возмущение. Помещая фотодетектор в первое плечо прибора, мы производим наблюдение местоположения фотона. Этот акт наблюдения заставляет систему перескочить из состояния суперпозиции T1 + T2 в одно из чистых состояний — либо T1, либо T2. Волновая функция суперпозиции «коллапсирует» в одно из чистых состояний, из которых складывается эта суперпозиция. Если система перескакивает в состояние T1, то фотон регистрируется. И конечно, попав в фотодетектор, он уже не распространяется дальше по интерферометру. Если фотон перескакивает в состояние T2, он не регистрируется фотодетектором, расположенным в первом плече, и продолжает двигаться дальше, достигая в конце концов области, подготовленной к регистрации интерференционной картины. Однако, поскольку этот фотон находится в чистом состоянии T2, то имеется лишь одна волна амплитуды вероятности. Когда она достигает области «перекрытия» (на рис. 5.1 внизу), там нет другой волны амплитуды вероятности, с которой могла бы возникнуть интерференция. Поэтому никакой интерференционной картины не появляется. Одиночное пятно образуется, когда каждый фотон, пройдя через прибор в чистом состоянии T2, подобно пуле, попадает в это пятно на детекторе. Размер пятна такой же, как размер (диаметр) исходного светового пучка, вошедшего в прибор, и в нем нет пространственных колебаний, характерных для интерференционной картины.

Возвращаемся к котам Шрёдингера

Наблюдение местоположения фотона с помощью фотодетектора в первом плече интерферометра заставляет фотон перескочить из состояния суперпозиции T1 + T2 в чистое состояние — либо T1, либо T2. Однако единственное измерение не позволяет узнать, какое состояние будет получено в результате наблюдения. Шансы получить T1 или T2 составляют 50 на 50. После многочисленных измерений мы знаем, что вероятность перескакивания в состояние T1 равна 50%, но невозможно заранее сказать, что случится в конкретном единичном наблюдении. Это настоящее физическое проявление ситуации, которую мы обсуждали в главе 1 на примере котов Шрёдингера, когда в каждом из 1000 ящиков было по коту. Каждый кот находился в состоянии суперпозиции — на 50% живой и на 50% мертвый. В этом совершенно нефизическом, но способствующем пониманию сути вопроса сценарии при вскрытии ящика выполнялось наблюдение состояния здоровья кота. Иногда он оказывался совершенно здоровым, иногда — мертвым. После вскрытия всех ящиков было определено, что вероятность обнаружить живого кота составляет 50%, но нет способа предсказать до вскрытия конкретного ящика, то есть до выполнения отдельного наблюдения, живой или мертвый кот будет там найден. До вскрытия ящика кот находится в состоянии суперпозиции живого и мертвого в пропорции 50 : 50. Акт выполнения наблюдения по­рождает непренебрежимое возмущение и заставляет состояние суперпозиции перескочить в одно из чистых состояний — либо живое, либо мертвое. Как говорилось в главе 1, состояние суперпозиции живого/мертвого кота не существует и не может существовать, но интерферометр — это реальный пример той идеи, иллюстрацией которой служат коты Шрёдингера.

С помощью полупрозрачного зеркала фотон легко привести в состояние суперпозиции, представляющее собой смесь 50 на 50 двух трансляционных состояний. Когда фотон находится в состоянии суперпозиции, невозможно сказать, движется он по первому или по второму плечу прибора. Можно лишь сказать, что если мы выполним измерение, чтобы узнать, где фотон находится, это вызовет возмущение, которым невозможно пренебречь. Данное возмущение приведет к тому, что состояние системы изменится, и, вместо того чтобы быть в обоих плечах интерферометра с равной вероятностью, фотон окажется либо в одном из них, либо в другом. Интерференционная картина рождается, когда волны амплитуды вероятности фотона интерферируют друг с другом. Две компоненты состояния суперпозиции — T1 и T2, из которых складывается совокупная волна амплитуды вероятности для фотона в приборе, — интерферируют друг с другом. Если выполняется наблюдение, позволяющее узнать, где находится фотон, он будет найден либо в первом, либо во втором плече интерферометра. Однако сам факт наблюдения меняет систему так, что она более не находится в состоянии суперпозиции. Амплитуда вероятности больше не состоит из двух частей, которые могут интерферировать друг с другом, и интерференционная картина исчезает. Таким образом, фотон в интерферометре — это реальное проявление идей, связанных с котами Шрёдингера.