Добавить в цитаты Настройки чтения

Страница 11 из 16



В суде Доррелла часто просят обосновать закон Бенфорда. В таких случаях Даррелл становится перед лекционной доской и начинает считать от единицы и далее, записывая названные цифры. При этом он чувствует себя школьным учителем, проводящим урок математики. «Это просто выводит из себя судью и адвоката», — иронизирует он.

Мы можем сделать то же самое. Вот числа от 1 до 20:

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20

Больше половины этих чисел начинаются с цифры 1, поскольку от 11 до 19 все числа начинаются с единицы. Продолжаем считать. Где бы мы ни остановились, чисел с первой цифрой 1 будет не меньше, чем чисел с первой цифрой 2, поскольку для того, чтобы добраться до второго десятка, второй сотни или второй тысячи, необходимо назвать все числа первого десятка, первой сотни и первой тысячи. Точно так же чисел с первой цифрой 2 будет не меньше, чем чисел с первой цифрой 3 и т. д., вплоть до чисел с первой цифрой 9. Такое обоснование помогает понять закон Бенфорда на интуитивном уровне, и его вполне достаточно для суда как государственного органа, а вот для суда математики требуется более строгое доказательство.

Одно из самых поразительных свойств закона Бенфорда — что последовательность цифр не зависит от единицы измерения. Когда массив финансовых данных подчиняется закону Бенфорда в случае, если они выражены в фунтах, он будет подчиняться этому закону и после их конвертации в доллары. Если массив географических данных соответствует закону Бенфорда в километрах, он будет соответствовать ему и в случае их представления в милях. Это свойство, обозначаемое термином «масштабная инвариантность», верно всегда, поскольку числа, взятые из газет, банковских счетов и атласов мира показывают одно и то же распределение первых цифр независимо от используемых систем измерения и валюты.

Для перевода расстояния из миль в километры необходимо умножить его на 1,6; для конвертации денежной суммы из фунтов в доллары ее тоже следует умножить на фиксированное число, соответствующее текущему обменному курсу. Простейший способ понять масштабную инвариантность закона Бенфорда сводится к анализу поведения чисел в случае их умножения на два. Если число, начинающееся с цифры 1, умножить на 2, результат будет начинаться с цифры 2 или 3. (Например, 12 × 2 = 24; 166 × 2 = 332.) Если число, начинающееся с цифры 2, умножить на 2, первой цифрой произведения будет 4 или 5. (Например, 2,1 × 2 = 4,2; 25 × 2 = 50.) Первые две строки представленной ниже таблицы показывают, что происходит с первой цифрой числа в случае его умножения на два.

Первая цифра числа n

1

2

3

4

5

6

7

8

9

Первая цифра числа 2n

2 или 3

4 или 5

6 или 7

8 или 9



1

1

1

1

1

Процент чисел в рас­пре­де­ле­нии Бенфорда

30,1

17,6

12,5

9,7

7,9

6,7

5,8

5,1

4,6

Предположим, S — это массив данных, подчиняющихся закону Бенфорда. Давайте умножим на два каждое число, входящее в массив S, и обозначим новый массив чисел буквой T. Согласно таблице, числа из массива S, начинающиеся с цифры 5, составляют 7,9 процента от общего количества чисел в массиве; числа, первая цифра которых 6, — 6,7 процента, 7, 8 и 9 — 5,8; 5,1 и 4,6 процента соответственно. Следовательно, в массиве S доля чисел, начинающихся с 5, 6, 7, 8 или 9, равна 7,9 + 6,7 + 5,8 + 5,1 + 4,6 = 30,1 процента. Если числа, первая цифра которых 5, 6, 7, 8 или 9, умножить на два, произведение всегда будет начинаться с цифры 1, как показано в таблице. Другими словами, 30,1 процента чисел в массиве T начинается с цифры 1, что соответствует закону Бенфорда!

Данная закономерность имеет место и в случае других цифр. Умножение на 2 сначала нарушает, а затем восстанавливает действие закона Бенфорда, но распределение первых цифр при этом сохраняется. Я выбрал умножение на 2, поскольку это самый простой множитель, но с таким же успехом можно было бы взять в качестве множителя 3, или 1,6, или число π, или какое-либо еще — закон Бенфорда действовал бы, так или иначе. Под любое изменение масштаба распределение Бенфорда перенастраивается, как будто это делает рука самого Бога.

В течение нескольких десятилетий после открытия закона Бенфорда он считался не более чем аномалией, трюком из шоу иллюзионистов, нумерологией, но никак не математикой. Однако в 90-х годах ХХ столетия профессор Технологического института штата Джорджия Тед Хилл решил найти теоретическое обоснование распространенности этого закона. Сейчас ученый живет в городе Лос-Осос; это чуть дальше вдоль побережья Тихого океана от того места, где обосновался Даррелл Доррелл. Тед — бывший солдат, высокий, широкоплечий стройный мужчина с бритой головой и седыми усами, сохранивший армейскую выправку. Когда я приехал к нему, он повел меня в небольшой деревянный домик в конце сада, из окон которого открывался вид на океан и два национальных парка. В камине потрескивали дрова. Тед назвал этот домик «математической дачей». Это глобальный центр исследования закона Бенфорда.

Первый серьезный результат, полученный Тедом Хиллом, — это доказательство того, что при существовании некой универсальной закономерности распределения первых цифр оно подчиняется исключительно закону Бенфорда. То есть распределение первых цифр по Бенфорду — единственное, которое не меняется в случае изменения масштаба. Этот вывод позволил Теду изобрести игру, в которую мы с ним сыграли.

«Каждый из нас выбирает число, — объяснил мне Тед. — Затем мы их перемножаем. Если произведение начинается с цифры 1, 2 или 3, значит, выигрываю я; если с цифры 4, 5, 6, 7, 8 или 9 — то вы».

На первый взгляд может показаться, что в этой игре явный перевес в мою пользу, поскольку в моем распоряжении шесть цифр, тогда как у Теда — всего три. Тем не менее в большинстве случаев Тед будет выигрывать, выбирая числа в соответствии с распределением Бенфорда, другими словами — если на протяжении нескольких игр он будет выбирать числа, начинающиеся с цифры 1, — то в 30,1 процента случаев, цифру 2 — в 17,6 процента случаев и т. д. Если Тед будет действовать таким образом, от выбранного мной числа не зависит, какая цифра окажется первой: в 30,1 процента случаев это будет цифра 1, в 17,6 процента случаев — цифра 2, в 12,5 процента случаев — цифра 3. Сумма этих трех показателей составляет 60,2 процента; следовательно, Тед выиграет в 60,2 процента случаев. В эту игру хорошо играть на деньги: даже если в вашем распоряжении только 1, 2 и 3 в качестве целевых цифр, ваши шансы на победу гораздо выше, чем в случае цифр 4, 5, 6, 7, 8 и 9, хотя поначалу кажется, что это не так.