Добавить в цитаты Настройки чтения

Страница 15 из 18



Город Хиросима расположен на множестве островов, и, чтобы попасть на вокзал, Цутому пришлось переправиться через реку. Все мосты обрушились или сгорели, поэтому Ямагучи, сжав волю в кулак, попытался перебраться на другой берег по жуткому месиву мертвых тел, устилавших всю реку. Он буквально полз, отпихивая с пути обгоревшие части тел. Но неожиданно в слое трупов обнаружилась огромная полынья, вынудившая его повернуть назад. Выше по течению реки Ямагучи добрался до железнодорожной эстакады, в которой устоял один из пролетов около сорока метров в длину. Он залез на эту конструкцию, а дальше по металлическому тросу добрался до берега и спустился на землю. Пробравшись через толпу, бедняга очутился на вокзале, а вскоре – и в вагоне поезда. К счастью, поезд тронулся достаточно скоро, Ямагучи был спасен. Поезд летел по рельсам всю ночь, пока, наконец, не прибыл в родной город Цутому – Нагасаки.

Физик, оказавшийся в Хиросиме, мог бы констатировать, что гамма-лучи искорежили ДНК Ямагучи за триллионные доли секунды. С точки зрения химика, самые драматичные события закончились бы за миллисекунду, – к этому моменту свободные радикалы уже успели бы изрешетить ДНК. Цитолог мог бы наблюдать за организмом уцелевшего несколько часов, отслеживая, как клетки пытаются залатать изорванную двойную спираль. Врач диагностировал бы у пострадавшего лучевую болезнь – головные боли, рвоту, внутренние кровотечения, отслоение кожи, малокровие – все эти симптомы проявляются в течение недели. Наибольшее терпение пришлось бы проявить генетику. Генетический ущерб, нанесенный жертвам атомных бомбардировок, проявляется спустя годы и даже десятилетия. По мрачному стечению обстоятельств, именно за эти десятилетия ученые смогли составить полную картину работы генетических механизмов, а также возникающих при этом сбоев. Можно сказать, что они наблюдали растянутый во времени непрерывный репортаж о разрушении ДНК.

Сегодня, изучая в ретроспективе эксперименты над ДНК и белками, проводившиеся в 1940-е годы, мы находим их очень убедительными. Однако в те годы лишь некоторые ученые смогли распознать, что именно ДНК является носителем генетической информации. Более веские доказательства на этот счет были получены в 1952 году вирусологами Альфредом Херши и Мартой Чейз. Они знали, что вирус инфицирует клетку, подменяя ее генетический материал своим. А поскольку вирусы, которые они изучали, состояли только из ДНК и белков, гены должны были находиться либо в ДНК, либо в белках. Альфред и Марта решили пометить вирусы радиоактивными изотопами серы и фосфора, а затем выпустить их в клеточную культуру. Соответственно, если бы генетическая информация передавалась через белок, то в инфицированных клетках обнаружилась бы радиоактивная сера. Но когда Херши и Чейз отделили зараженные клетки, они нашли там только радиоактивный фосфор. Это означало, что вирус внедряет в клетку именно свою ДНК.

Результаты своего исследования ученые опубликовали в 1952 году, окончив статью предостережением: «Описанные эксперименты не предполагают каких-либо иных выводов химического характера». Точно. Все ученые, которые к тому моменту еще занимались проблемой белковой наследственности, забросили свои прежние исследования и сосредоточились на изучении ДНК. Развернулась настоящая гонка – кому же первому удастся понять структуру ДНК? В апреле 1953 года, спустя всего год после выхода статьи Херши и Чейз, весь мир узнал о двух нескладных парнях, научных сотрудниках Кембриджского университета – Фрэнсисе Крике и Джеймсе Уотсоне (кстати, Уотсон ранее учился у Германа Мёллера). Крик и Уотсон впервые предложили термин «двойная спираль», который впоследствии стал легендарным.

Двойная спираль, описанная Уотсоном и Криком, состоит из двух длинных нитей, сплетающихся в единую правовращающую косичку. Поднимите правую руку и направьте большой палец в потолок. Теперь остальные пальцы у вас на правой руке согнуты в направлении против часовой стрелки; можно сказать, что спираль ДНК завивается вокруг них снизу вверх. Каждая нить состоит из двух главных цепей, которые удерживаются вместе парными нуклеотидными основаниями, входящими друг в друга плотно, как кусочки пазла. Угловатый аденин (А) сочетается с тимином (Т), изогнутый цитозин (Ц) – с гуанином (Г). Гениальная догадка Уотсона и Крика заключалась в том, что в силу такой взаимной дополнительности (комплементарности) парных оснований А – Т, Ц – Г одна нить ДНК может служить шаблоном для копирования другой. То есть, если одна сторона двойной спирали содержит нуклеотиды Ц – Ц – Г – А – Г – Т, то вторая должна иметь вид – Г – Г – Ц – Т – Ц – А. Система настолько проста, что всего за одну секунду можно скопировать сотни оснований ДНК.

Все это замечательно, но в то же время двойная спираль не выдала никакой информации о том, как именно гены ДНК формируют белки, – а ведь именно это важнее всего. Чтобы понять этот процесс, ученым пришлось тщательно исследовать «химического родственника» ДНК – молекулу РНК. Эта молекула похожа на ДНК, но в ней закручена лишь одна нить, и вместо тимина (T) находится урацил (У). Биохимики обратились к РНК, поскольку концентрация этой кислоты резко возрастает, когда клетки начинают вырабатывать белки. Но когда они принялись за поиски РНК внутри клеток, оказалось, что эта кислота неуловима, подобно исчезающему виду птиц; удавалось обнаружить лишь крохи, которые тут же пропадали. Понадобились годы усердных экспериментов, чтобы точно установить, что происходит, – как именно клетки преобразуют последовательность оснований ДНК в инструкции для РНК, при помощи которых затем создаются белки.

Сначала клетки осуществляют «транскрипцию» ДНК в РНК. Этот процесс похож на копирование самой ДНК тем, что одна из ее нитей служит шаблоном. Так, последовательность Ц – Ц – Г– А – Г – Т оснований ДНК превратилась бы в молекуле РНК в последовательность Г – Г – Ц – У – Ц – А (основание У встает вместо Т). После сборки такая цепочка РНК выходит за пределы ядра и направляется к особым образованиям, которые занимаются производством белков, – рибосомам. Поскольку молекула РНК передает сообщение от одной стороны к другой, ее называют информационной или матричной РНК (мРНК).



Построение белка (трансляция) начинается в рибосомах. По прибытии мРНК рибосома захватывает ее недалеко от окончания и выявляет всего лишь три звена цепочки (трипле т). В нашем примере был бы обнаружен триплет ГГЦ. После этого к работе приступает второй тип РНК – транспортная РНК (тРНК). Каждая молекула тРНК содержит две основные части: аминокислоту, прикрепленную к ней (груз, который предстоит передать), и триплет РНК, который выступает, подобно мачте корабля. Различные молекулы тРНК могут попытаться прикрепиться к выявленному триплету РНК, но это пройдет успешно лишь тогда, когда основания окажутся комплементарными. Таким образом, к триплету ГГЦ может присоединиться лишь тРНК с фрагментом ЦЦГ. И только после успешного соединения рибосома принимает груз – аминокислоту.

В этот момент молекула тРНК уходит, молекула мРНК сдвигается на три позиции и все начинается заново. Выявляется другой триплет, к которому стыкуется молекула тРНК с другой аминокислотой. Так занимает свое место вторая аминокислота. В конце концов, после множества шагов создается цепочка аминокислот – белок. А поскольку каждому триплету РНК соответствует одна и только одна аминокислота, информация должна в точности быть передана от ДНК к РНК, а затем белку. Этот процесс происходит в каждом живом существе. Введите одну и ту же молекулу ДНК в морскую свинку, лягушку, тюльпан, слизевик, дрожжи, американского конгрессмена – и вы получите одинаковые цепочки аминокислот. Поэтому не удивительно, что в 1958 году Фрэнсис Крик возвел процесс «ДНК → РНК → белок» в ранг центральной догмы молекулярной биологии[12].

И тем не менее догма Крика не объясняет всех нюансов в создании белка. С одной стороны, можно заметить, что из четырех оснований ДНК можно составить 64 различных триплета (4 × 4 × 4 = 64). В то же время эти триплеты кодируют всего лишь двадцать аминокислот, которые содержат наши тела. Почему?

12

Вопреки своему величественному имени центральная догма обладает сомнительным наследием. Поначалу Крик подразумевал, что эта догма будет значить нечто вроде «ДНК производит РНК, а РНК производит белки». Позднее он переформулировал это более точно, говоря о том, каким образом «информация» передается от ДНК к РНК, а затем к белкам. Однако вторую версию усвоили не все ученые, и, как в давние времена религиозных догм, это привело к тому, что у некоторых приверженцев отключилась способность рационального мышления. Понятие «догма» подразумевает неоспоримую истину, и Крик впоследствии со смехом признавался, что он даже не знал точного определения этого слова – просто оно звучало по-научному. Однако некоторые ученые восприняли ее в духе церковного повиновения, и по мере того как распространялась весть об этой, как предполагалось, непоколебимой, догме, она непостижимым образом превратилась в умах многих в нечто менее конкретное, вроде «ДНК существует только для того, чтобы производить РНК; РНК существует только для того, чтобы производить белки». Учебники даже до сегодняшнего дня иногда называют это центральной догмой. Но, к сожалению, такая незаконнорожденная догма существенно искажает истину. Она в течение десятилетий (а время от времени и сейчас) затрудняла осознание того, что ДНК, и в особенности РНК, делают гораздо больше, чем производство белков.

В самом деле, для основного процесса производства белков необходимы информационная РНК (мРНК), транспортная РНК (тРНК) и рибосомная РНК (рРНК), но кроме них существует целая дюжина других регулирующих РНК. Изучение различных функций ДНК подобно разгадыванию кроссворда, когда вы знаете последние буквы слова, но не знаете начальных, и поэтому не спеша перебираете весь алфавит. Мне встречались такие обозначения: aРНК, bРНК, cРНК, dРНК, eРНК, fРНК и так далее до «эрудитовских» qРНК и zРНК. Есть также rasiРНК и tasiРНК, piРНК, snoРНК, кое-что в духе Стива Джобса – РНКi, а также другие. К счастью, мРНК, рРНК и тРНК охватывают все генетические процессы, которые нам понадобятся в этой книге.