Добавить в цитаты Настройки чтения

Страница 5 из 13



В первую очередь, ЭВМ «Стрела» и БЭСМ-2 задействовали в военных целях – для изучения термоядерных реакций, расчета баллистических траекторий ракет и так далее. В 1956-м году Лебедев выступил с докладом на конференции в западногерманском городе Дармштадте. Академик устроил переполох, рассказав миру о том, что в СССР действует сверхбыстрая ЭВМ, – оказалось, что в Европе машине БЭСМ-1 не было равных.

Дальнейшее развитие вычислительных систем на протяжении нескольких лет было эволюционным. В 1958-м году на арену вышла система БЭСМ-2 с внешней памятью на основе ферритовых сердечников и увеличенным набором исходных команд. Впервые ЭВМ подготовили к серийному производству. Первые серьезные шаги по развитию централизованной производственной базы гражданских сфер применения ЭВМ были сделаны в конце 50-х годов после успешного завершения работ по созданию первых в нашей стране промышленных, универсальных вычислительных машин М-20 (см. рис. 1). В 1958-м году в серию пошла машина М-20, созданная в коллективе С.А. Лебедева в ИТМ и ВТ (зам. главного конструктора М.К. Сулим и М.Р. Шура-Бура) [1, 3]. Скорость решения задач напрямую зависела от подготовленности программиста, – он должен был быстро реагировать на сбои, ошибки, отлично ориентироваться в переключателях пульта управления. Первые попытки реализовать системный язык программирования С.А. Лебедев предпринял еще при разработке М-20, машина понимала некоторые наглядные и интуитивные команды, мнемокоды. Это существенно расширило круг специалистов, способных взаимодействовать с ЭВМ.

Эта машина сыграла большую роль в развитии программирования, а позже на ее базе была создана транзисторная машина М-220. Создание машины М-20 являлось выдающимся достижением в развитии советской техники универсальных цифровых вычислительных машин. По своему быстродействию машина М-20 превосходила существовавшие отечественные и серийные зарубежные вычислительные машины. Благодаря большому быстродействию, совершенству логической структуры и развитой системе оперативных и внешних запоминающих устройств, а также высокой надежности машины, она позволяла решать множество сложных задач, выдвигавшихся отраслями науки и техники.

Машина М-20 и ее аналог БЭСМ-4 имели следующие технические характеристики: быстродействие 20 тыс. операций в секунду, оперативная память на ферритовых сердечниках емкостью 4096 слов, представление чисел с плавающей запятой, разрядность 45, система элементов – ламповые и полупроводниковые схемы, внешняя память – магнитные барабаны и ленты, а также особенности:

• впервые в отечественной практике была применена автоматическая модификация адреса;

• совмещение работы арифметического устройства и выборки команд из памяти;

• введение буферной памяти для массивов, выдаваемых на печать, совмещение печати со счетом;

• использование накопителя на магнитной ленте с быстрым пуском и остановом;



• для М-20 разработана одна из первых технологических систем программного обеспечения ИС-2 (Институт прикладной математики АН СССР).

Вслед за М-20 были разработаны и освоены в серийном производстве машины «Урал-1», «Минск-1». Они вместе с их полупроводниковыми наследниками (М-220, Урал-11-14, Минск-22 и -32), созданными в 60-е годы, были основными в СССР, практически до освоения в серийном производстве машин третьего поколения, т. е. до начала 70 – х годов [1, 3]. Основную нагрузку по выпуску этих машин приняли на себя коллективы Московского завода САМ, Пензенского завода ВЭМ, а также вступившие в строй в 1959-м году Казанский завод ЭВМ, Минский завод математических машин, Астраханский завод «Прогресс» и ряд других предприятий. В эти же годы была существенно расширена научно-исследовательская и конструкторская база: в 1956-м году созданы НИИУВМ (Пенза) и НИИММ (Ереван); в 1958-м году – НИИ-250 (Пенза), а также ряд конструкторские бюро на заводах.

В середине 50-х годов в оборонных отраслях

промышленности и в организациях министерства обороны страны проявился интерес к применению цифровых вычислительных машин для решения задач обработки информации и управления в системах военного назначения. Начались активные, секретные работы по освоению применения цифровой вычислительной техники для систем противовоздушной и противоракетной обороны, для контроля космического пространства и управления полетом в авиации и в космосе, для управления войсками и средствами вооружения разных видов. Многие из этих задач принципиально отличались по своему характеру и масштабу от ставших к тому времени традиционными вычислительных задач в гражданских областях и в науке. В них преобладали: логические операции, большая размерность, реальный масштаб времени и ряд других специфических свойств и требований. Очень быстро увеличивались номенклатура и объем функций систем, которые требовалось автоматизировать. Для реализации таких функций были необходимы значительные ресурсы памяти и производительности ЭВМ, а также большие коллективы специалистов, способные создавать крупные комплексы алгоритмов и программ в допустимые сроки. Уже первые комплексы программ военного назначения в 50-е годы достигали нескольких десятков тысяч команд, для чего было необходимо разрабатывать и применять некоторые методы программной инженерии. В результате начало активно развиваться специфическое направление вы числительной техники и программирования для крупных систем реального времени оборонного назначения [3, 9].

Это направление почти одновременно начало формироваться в оборонных отраслях промышленности и на предприятиях в нескольких проблемноориентированных областях: для сухопутных, авиационных, морских, ракетных и других систем. Для последующего развития вычислительной техники существенными оказались особые требования заказчиков различных областей применения. В результате ЭВМ разделились на два класса: на стационарные, работающие в помещениях, и на мобильные, размещаемые на подвижных (транспортабельных) или движущихся (бортовых) объектах (в том числе, необслуживаемых). Эти факторы определили большие принципиальные различия в архитектуре, технических, климатических и массогабаритных характеристиках этих двух классов, специализированных ЭВМ оборонного назначения, а также в программировании для них. Первый класс тяготел к архитектурам и конструктивам стационарных, универсальных ЭВМ с необходимыми расширениями и модификациями для специализированного применения. Машины второго класса – мобильные, отличались наибольшей спецификой свойств задач и характеристик внешней среды применения, от остальных типов ЭВМ.

Начали разрабатываться относительно небольшие, бортовые, мобильные, а также крупные территориально-распрелеленные вычислительные системы на базе средств телекоммуникации, функционирующие в реальном времени. Все эти работы проводились в режиме строгой секретности, и каждая функционально законченная оборонная система создавалась практически независимо как от достижений за рубежом, так и от методов и результатов на других отечественных предприятиях. На них акцентируется последующее изложение в главе 2.

Для исследований, моделирования и постановки задач систем вооружения для оборонной промышленности в 1954 – м году был создан ВЦ-1 министерства обороны СССР – первый в стране профильный вычислительный центр. В научно-производственном аспекте по широте научных исследований и количеству разработчиков и специалистов в 1950-е годы это был самый мощный вычислительный центр в Советском Союзе и один из самых мощных в мире [11]. ВЦ-1 МО (впоследствии ЦНИИ-27 Министерства обороны СССР) был создан по инициативе Анатолия Ивановича Котова, который он и возглавил. ВЦ-1 стал одним из ведущих оборонных научных центров страны. В 1952-м году А.И. Китов защищает первую в СССР кандидатскую диссертацию, посвященную вопросам программирования. Название этой диссертации – «Программирование задач внешней баллистики ракет дальнего действия». В этом же году он организовал и возглавил первый в стране отдел вычислительных машин в Академии артиллерийских наук. После упразднения этой Академии в 1953-м году отдел А.И. Китова вместе с его начальником был переведён в подчинение Артиллерийской военно-инженерной академии им. Ф.Э. Дзержинского, а затем он возглавил ВЦ-1.