Добавить в цитаты Настройки чтения

Страница 61 из 163



В 1939 г., когда Оппенгеймер и Снайдер делали свою работу, было абсолютно безнадежно надеяться рассчитать во всех деталях схлопывание с реальным давлением (термическое давление, давление вырождения и давление, порождаемое ядерными силами), с ядерными реакциями, ударными волнами, нагревом, излучением и выбросом массы. Однако за прошедшее двадцатилетие усилия, направленные на создание ядерного оружия, обеспечили ученых подходящими для этого инструментами. Давление, ядерные реакции, ударные волны, нагрев, излучение, выброс массы — все это является основными характеристиками водородной бомбы, без этого бомба не взорвется. Чтобы разработать водородную бомбу требовалось все это учесть в компьютерных вычислениях.

Группа Уилера, конечно, этим занималась. Поэтому теперь казалось совершенно естественным переписать компьютерные программы так, чтобы вместо моделирования взрыва водородной бомбы они моделировали взрыв массивной звезды. Это было бы вполне естественно при условии, если бы группа Уилера все еще существовала. Однако теперь команда была распущена; они вместе написали доклад РМВ-31 и рассеялись, чтобы учить, проводить физические исследования или стать администраторами в различных университетах и правительственных лабораториях.

Опыт создания американской бомбы теперь сконцентрировался в Лос-Аламосе и новой правительственной лаборатории в Ливерморе (Калифорния). В Ливерморе в конце 1950-х Стирлинга Колгейта пленила проблема схлопывания звезд с образованием черной дыры. С одобрения Эдварда Теллера и в сотрудничестве с Ричардом Уайтом (а позднее с Майклом Мэем) Колгейт принялся за моделирование процесса схлопывания на компьютере. Модель Колгейта — Уайта — Мэя сохраняла часть идеализаций Оппенгеймера. Они взяли за основу предположение, что схлопывающаяся звезда является сферической и не вращается. Без этих ограничений расчеты были бы невообразимо более сложными. Однако их модель принимала в расчет все то, что волновало Уилера: давление, ядерные реакции, ударные волны, нагрев, излучение, выброс массы — и делала это основательно, опираясь на опыт разработки бомбы и машинные коды. Для отладки программ моделирования потребовалось несколько лет, но к началу 1960-х они уже хорошо работали.

Однажды в начале 1960-х годов Джон Уилер ворвался в аудиторию Принстонского университета, где он вел занятия по теории относительности и которые я, в то время аспирант, посещал. Он немного опоздал, но сиял от удовольствия. Уилер только что вернулся из поездки в Ливермор, где увидел результаты последних расчетов Колгей-та, Уайта и Мэя. Взволнованно он чертил на доске диаграмму за диаграммой, объясняя то, что обнаружили его ливерморские друзья.

Если схлопывающаяся звезда имеет малую массу, то она вызывает взрыв сверхновой и формирует черную дыру именно так, как предполагал тридцатью годами ранее Цвикки. Когда масса звезды много больше максимума, равного 2 солнечным массам, схлопывание (несмотря на давление, ядерные реакции, ударные волны, нагрев и излучение) порождает черную дыру. Процесс рождения черной дыры замечательным образом совпадал с сильно идеализированной моделью, рассчитанной почти 25 лет назад Оппенгеймером и Снайдером. Наблюдаемое снаружи схлопывание замедляется и совершенно замораживается при критической длине окружности, но если наблюдать с поверхности звезды, никакого замораживания не происходит. Поверхность звезды непрерывно, без всяких отклонений продолжает сжиматься все дальше, проходя критический размер.

Фактически для Уилера это не явилось неожиданностью. Другие (о них речь пойдет позже) уже превратили его из критика черных дыр Оппенгеймера в их восторженного сторонника. Но здесь впервые появилось конкретное доказательство, полученное в ходе реалистичного компьютерного моделирования: схлопывание должно порождать черные дыры.

Был ли Оппенгеймер доволен подобным превращением, произошедшим с Уилером? Нет, он не проявлял особого интереса и не выказывал удовлетворения. На международной конференции в Далласе (Техас) в декабре 1963 г. по случаю открытия квазаров Уилер сделал большой доклад о схлопывании звезд. В нем он восторженно описал расчеты 1939 г. Оппенгеймера и Снайдера. Оппенгеймер присутствовал на конференции, но во время доклада Уилера сидел в холле на скамейке и болтал с друзьями на посторонние темы. Через 30 лет Уилер с грустью вспоминал об этом событии.

* * *





В конце 1950-х годов Зельдовичу начала надоедать его работа по разработке оружия. Большая часть интересных проблем уже была решена. В поиске новых задач, продолжая руководить командой разработчиков бомбы на «Объекте», а также другой группой, проводящей вспомогательные расчеты в Институте прикладной математики в Москве, он часть своего времени обращал сначала на теорию элементарных частиц, а затем на астрофизику. В работе по созданию бомб Зельдович «бомбардировал» свою команду идеями, а члены группы проводили вычисления, чтобы проверить, будут ли идеи работать. «Искры Зельдовича, бензин его группы», — так это описывал Гинзбург. Обратившись к астрофизике, Зельдович сохранил свой стиль.

Схлопывание звезд было одной из астрофизических проблем, захвативших его воображение. Так же как и Уилеру, Колгейту, Мэю и Уайту в Америке, ему было очевидно, что методы, разработанные при конструировании водородной бомбы, идеально подходили для математического моделирования схлопывающихся звезд.

Чтобы детально разобраться в загадке схлопывания, Зельдович взял в оборот нескольких молодых коллег: Дмитрия Надеждина, Владимира Имшенника из Института прикладной математики и Михаила Подурца с «Объекта». В ходе интенсивных дискуссий он передал им свое видение того, как схлопывание звезд может моделироваться на компьютере, при учете всех ключевых эффектов, которые были столь же важны и для водородных бомб: давления, ядерных реакций, ударных волн, теплоты, излучения, выброса массы. Вдохновленные этими дискуссиями, Имшенник и Надеждин смоделировали схлопывание звезд малой массы, а также — независимо от Колгейта и Уайта в Америке — представления Цвикки о сверхновых. Параллельно Подурец смоделировал схлопывание массивных звезд. Результаты Подурца, опубликованные почти одновременно с результатами Мэя и Уайта, были почти идентичны американским. Сомнений не оставалось: схлопывание порождает черные дыры, и именно таким образом, как предсказали Оппенгеймер и Снайдер.

Адаптация машинных программ разработки бомбы для моделирования схлопывания звезд — лишь одна из многих близких связей между ядерным оружием и астрофизикой. Эти связи были очевидны и Сахарову в 1948 г. Когда ему приказали вступить в группу разработчиков бомбы под руководством Тамма для освоения проблемы, он погрузился в изучение астрофизики. В 1969 г. неожиданно и я наткнулся на эту взаимосвязь.

Я никогда не стремился узнать, в чем именно состояла идея Теллера— Улама/Сахарова — Зельдовича. Супербомба, которая (если исходить из главного достоинства их идеи) могла быть «сколь угодно мощной», казалась мне чем-то непристойным, и мне даже не хотелось рассуждать о том, как она работает. Однако в процессе поиска понимания роли нейтронных звезд во Вселенной идея Теллера — Улама проникла в мое сознание.

За несколько лет до этого Зельдович обратил внимание на то, что газ из межзвездного пространства или от близлежащей звезды, падая на нейтронную звезду, должен нагреваться и ярко светиться. Фактически газ должен стать настолько горячим, что сможет испускать в основном рентгеновские лучи высокой энергии, а не обычный, менее энергетичный свет. Падающий газ определяет уровень испускания рентгеновских лучей. Зельдович доказывал, что верно и обратное: рентгеновское излучение контролирует количество падающего газа. Таким образом, оба фактора — газ, и рентген, работая вместе, дают устойчивый, саморегулирующийся поток. Если скорость газа при падении слишком велика, то он будет порождать сильное рентгеновское излучение, и испускаемые рентгеновские лучи будут ударяться о падающий газ, создавая давление, направленное наружу, которое замедлит падение газа (рис. 6.4а). Если же газ падает с малой скоростью, он дает так мало рентгеновских лучей, что они не смогут тормозить падение газа, и поток будет увеличиваться. Существует только определенная скорость падения газа, не слишком высокая и не слишком низкая, при которой рентгеновское излучение и газ находятся во взаимном равновесии.