Страница 1 из 8
Чарльз Сейфе. Ноль: биография опасной идеи
Глава 0. Утрата силы
Ноль поразил американский корабль «Йорктаун», словно торпеда. 21 сентября 1997 года, патрулируя побережье Виргинии, невероятно дорогой ракетный крейсер внезапно содрогнулся и остановился. «Йорктаун» был мёртв. Военные корабли строятся так, чтобы выдержать взрыв мощной мины. Хотя «Йорктаун» был хорошо защищён от самого разнообразного оружия, никто не подумал защитить его от ноля. Это была трагическая ошибка.
На компьютеры «Йорктауна» только что поставили новую программу, управляющую двигателями. К несчастью, никто не заметил бомбы, скрывавшейся в программном коде, — ноля, который инженеры должны были удалить. Ноль остался скрытым до тех пор, пока программа не извлекла его из памяти и не задохнулась.
Когда компьютерная система «Йорктауна» попыталась поделить на ноль, двигатели мощностью восемьдесят тысяч лошадиных сил стали бесполезны. Потребовалось почти три часа, чтобы подключить аварийную систему управления, и «Йорктаун» еле дотащился до порта. Инженеры потратили два дня, избавляясь от ноля, ремонтируя двигатели и возвращая «Йорктаун» в боеспособное состояние.
Никакое другое число не может нанести такой урон. Отказ компьютеров, такой, который поразил «Йорктаун», — всего лишь бледная тень могущества ноля. Культуры вооружались против ноля, философы сдавались под его влиянием, потому что ноль отличен от всех других чисел. Он позволяет бросить взгляд на невыразимое и бесконечное. Поэтому-то его боялись, ненавидели, ставили вне закона.
Здесь рассказывается история ноля — его рождения в древности, роста и процветания на Востоке, борьбы за признание в Европе, при шествия на Запад и вечной угрозы современной физике. Это история людей, которые сражались за смысл этого таинственного числа, — учёных и мистиков, исследователей и церковников, каждый из которых пытался понять ноль. Это история попыток западного мира безуспешно (а иногда и насильственно) заслониться от восточной идеи ноля. И это история парадоксов, созданных невинным с виду числом, потрясающим самые блестящие умы даже нашего столетия и угрожающих повредить саму систему научной мысли.
Ноль могуществен, потому что он — близнец бесконечности. Они равны и противоположны, как инь и ян. Они одинаково парадоксальны и одинаково смущают. Самые главные вопросы в науке и в религии касаются небытия и вечности, пустоты и беспредельности, ноля и бесконечности. Споры насчёт ноля были сражениями, потрясавшими основы философии, естественных наук, математики и религии. За каждым решением кроются ноль и бесконечность.
Ноль был причиной битвы между Востоком и Западом. Ноль был в центре борьбы между религией и наукой. Ноль стал языком природы и самым важным инструментом математики. И ещё он — самая загадочная проблема физики: тёмная сердцевина чёрной дыры и яркая вспышка Большого взрыва появились из тщетных попыток нанести нолю поражение.
На протяжении всей своей истории, несмотря на отрицание и изгнание, ноль всегда побеждал тех, кто ему противостоял. Человечеству никогда не удавалось заставить ноль покориться его философам. Вместо этого ноль формировал взгляды человека на Вселенную и на Бога.
Глава 1. Ничего не получится
Происхождение понятия «ноль»
Тогда не было ни сущего, ни не сущего. Не было ни воздушного пространства, ни неба над ним. Что в движении было? Где?
История ноля — история очень древняя. Её корни уходят к началу математики, за тысячи лет до появления первой цивилизации, задолго до того, как люди научились читать и писать. Однако каким бы естественным ни казалось нам понятие ноля сегодня, для древнего человека он был чуждой — и пугающей — идеей. Это была концепция, возникшая в Плодородном полумесяце (примерно территория современного Ирака) за несколько столетий до рождения Христа; ноль не только олицетворял первобытную бездну, он также обладал опасными математическими свойствами. Ноль обладал властью разрушить систему логики.
Начала математической мысли могут быть найдены в желании сосчитать овец, в потребности вести учёт собственности и течения времени. Ни одна из этих задач не требовала использования ноля; цивилизация прекрасно функционировала за столетия до его открытия. Понятие ноля было настолько непривлекательно для некоторых культур, что они предпочитали жить без него.
Жизнь без ноля
Проблема с нолём заключается в том, что мы не нуждаемся в нём в повседневной жизни. Никто не отправляется на рынок, чтобы купить ноль рыб. В определённой мере это наиболее цивилизованная из основ, и её использование было навязано нам только потребностями разработанных моделей мышления.
Современному человеку трудно представить себе жизнь без ноля, как трудно представить жизнь без чисел 7 или 31. Тем не менее было время, когда ноля не существовало — как не существовало и этих чисел. Дело было ещё в доисторические времена, так что палеонтологам пришлось собирать по кусочкам историю рождения математики, изучая осколки камней и кости. По этим фрагментам они узнали, что математики каменного века были более неприхотливы, чем современные. Вместо грифельной доски они использовали… волков.
Ключ к математике каменного века был найден при раскопках в Чехословакии в конце 1930-х годов археологом Карлом Абсаломом. Он нашёл волчью кость с серией насечек; кости было тридцать тысяч лет. Никто не знает, использовал ли её первобытный человек, чтобы сосчитать, сколько он убил оленей, сколько рисунков сделал или сколько дней не мылся, однако совершенно ясно, что древние люди что-то подсчитывали.
Волчья кость была в каменном веке эквивалентом суперкомпьютера. Предки нашего первобытного математика не могли сосчитать даже до двух, а уж ноль им точно не требовался. На самых начальных этапах люди могли различать только «один» и «много». Первобытный человек владел одним копьём или несколькими; он съедал одну убитую ящерицу или многих. Не было никакой возможности показать другие количества между «один» и «много». С течением времени примитивные языки развились достаточно, чтобы различать «один», «два» и «много», а потом и «один», «два», «три» и «много», но названий для бо́льших чисел ещё не было. Некоторые языки всё ещё имеют такое ограничение. Индейцы сирионо в Боливии и бразильские индейцы яномамо не имеют названий для чисел больше трёх, вместо этого они говорят «несколько» или «много».
Сама природа чисел такова, что их можно складывать друг с другом, получая новые, так что система не остановилась на трёх. Через некоторое время умные члены племени начали нанизывать числа-слова в ряд, чтобы получить бо́льшие числа. Современные языки народностей бакайри и бороро в Бразилии демонстрируют этот процесс в действии. Их система чисел выглядит так: «один», «два», «два и один», «два и два», «два и два и один» и так далее. Эти люди считают двойками. Математики называют такую систему бинарной.
Немногие народы считают двойками, как бакайри и бороро. Старая волчья кость несёт на себе более типичную древнюю систему счёта. Кость имеет пятьдесят пять маленьких насечек, объединённых в группы по пять; после первых двадцати пяти отметок имеется ещё одна насечка. Очень похоже на то, что наш первобытный человек считал пятёрками, а потом сгруппировал пятёрки по пять. В этом есть здравый смысл. Гораздо быстрее подсчитывать значки, объединённые в группы, чем пересчитывать их по одному. Современные математики сказали бы, что резчик по волчьей кости использовал основанную на цифре 5, или пятеричную, систему счёта.
Но почему именно на цифре 5? В конце концов это произвольное решение. Если бы первобытный человек объединил значки в группы по четыре и считал более крупными единицами, равными 16, или в группы по шесть и равными 36, его система счёта работала бы также хорошо. Группировка не влияет на число насечек на кости, она отражается только на том, как резчик их объединил. Окончательный ответ был бы получен один и тот же, как бы ни считать значки. Однако наш первобытный человек предпочёл считать группами по пять, а не по четыре, и такое предпочтение разделяли люди по всему миру. Природа случайно дала человеку по пять пальцев на каждой руке, и из-за этой случайности пятёрка оказалась излюбленной основой системы счёта во многих культурах. Древние греки, например, использовали термин «пятерение» для описания процесса подсчёта.
1
Перевод Т. Я. Елизаренковой (здесь и далее — прим. науч. ред., если не оговорено иное).