Добавить в цитаты Настройки чтения

Страница 5 из 11



Рис. 11

Рис. 12

Теперь мы должны сделать последний шаг в процессе обобщения. Это будет самой важной из всех догадок, которые мы сделали до сих пор. Связь между силой и изменением скорости должна быть установлена так, чтобы можно было найти путеводную нить, которая поможет нам понять общие проблемы движения.

Путь к объяснению движения вдоль прямой был весьма прост: внешняя сила вызывает изменение скорости; вектор силы имеет то же направление, что и изменение скорости. Но что теперь следует выбрать в качестве путеводной нити в случае криволинейного движения? Совершенно то же самое! Единственное различие в том, что изменение скорости понимается теперь в более общем смысле, чем раньше. Достаточно взглянуть на пунктирные векторы (см. рис. 11 и 12), чтобы всё стало ясно. Если скорость известна для всех точек кривой, то направление силы в любой точке может быть найдено сразу же. Нужно нарисовать векторы скорости для двух моментов, отделённых очень короткими интервалами времени, а стало быть, соответствующих положениям, очень близким друг к другу. Вектор, проведённый из конца первого вектора к концу второго, показывает направление действующей силы. Но существенно, что оба вектора скорости должны быть отделены лишь «очень коротким» интервалом времени. Строгий анализ таких слов, как «очень близкий», «очень короткий», далеко не прост. Именно этот анализ привёл Ньютона и Лейбница к открытию дифференциального исчисления.

Путь, который привёл к обобщению идеи Галилея, длинен и извилист. Мы не можем показать здесь, сколь изобильными и плодотворными оказались последствия этого обобщения. Его применение приводит к простому и удобному объяснению многих явлений, которые считались несвязанными друг с другом и истолковывались неправильно. Из всего разнообразия движений мы возьмём лишь самое простое и применим к его объяснению только что сформулированные законы.

Пуля, выпущенная из ружья, камень, брошенный под углом к горизонту, струя воды, выходящая из трубы, — все они описывают хорошо известную траекторию одного и того же типа — параболу. Вообразим себе, например, что к камню прикреплён спидометр, так что вектор скорости камня может быть определён для любого момента. Результат представлен на рис. 13. Направление действующей на камень силы совершенно такое же, как и направление изменения скорости; мы уже видели, как его можно определить.

Рис. 13

Рис. 14 показывает, что сила вертикальна и направлена вниз.

Рис. 14

Совершенно то же самое мы видим, рассматривая движение камня, брошенного с вершины башни. Пути, а также и скорости, совершенно различны, но изменения скоростей имеют одинаковое направление — к центру Земли.

Камень, привязанный к верёвке и вращающийся в горизонтальной плоскости, движется по окружности. Все векторы на диаграмме, представляющей это движение, имеют одинаковую длину, если величина скорости постоянна (рис. 15). Тем не менее вектор скорости непрерывно меняется, так как траектория не прямолинейна. Только в случае равномерного прямолинейного движения не действуют никакие силы. Здесь же сила налицо, и скорость изменяется, но не по величине, а по направлению. Согласно закону движения, должна существовать некоторая сила, вызывающая это изменение; в данном случае сила действует между камнем и рукой, держащей верёвку.



Рис. 15

Сразу же возникают дальнейшие вопросы: в каком направлении действует сила? Опять векторная диаграмма даёт ответ. На рис. 16 даны векторы скоростей для двух очень близких точек и найдено ускорение. Видно, что вектор ускорения должен быть направлен вдоль верёвки к центру окружности и всегда перпендикулярен вектору скорости или касательной. Другими словами, рука через верёвку воздействует с некоторой силой на камень.

Рис. 16

Совершенно аналогичен и более важный пример — обращение Луны вокруг Земли. Обращение Луны можно считать приблизительно равномерным круговым движением. Сила, действующая на Луну, направлена к Земле, по тем же причинам, по которым в предыдущем примере она была направлена к руке. Никакой верёвки, связывающей Луну и Землю, нет, но мы можем представить себе линию между центрами обоих тел; сила направлена по этой линии к центру Земли, как и сила, действующая на камень, подброшенный над землёй или падающий с башни.

Всё, что мы сказали о движении, можно суммировать в одном предложении:

Сила и изменение скорости суть векторы, имеющие одно и то же направление.

Это чрезвычайно важная исходная идея, но она недостаточна для полного объяснения всех наблюдаемых движений. Переход от Аристотелева образа мышления к Галилееву положил самый важный краеугольный камень в обоснование науки. Прорыв был сделан, линия дальнейшего развития стала ясна. Нас во всём этом интересует первый этап развития; интересно следовать за первыми шагами, показать, как рождаются новые физические понятия в жестокой борьбе со старыми идеями. Мы касались только новаторских работ в науке, состоящих в нахождении новых и неожиданных путей развития; мы касались только прогресса в научной мысли, создающей вечно изменяющуюся картину мира. Начальные и основополагающие шаги всегда имеют революционный характер. Научное воображение находит старые понятия слишком ограниченными и заменяет их новыми. Развитие, продолжающееся по какой-либо уже принятой линии, эволюционно до тех пор, пока не достигается следующий поворотный пункт, где должно быть завоёвано новое поле исследования. Но чтобы понять, какие основания и какие трудности вызывают изменение основных понятий, мы должны знать не только исходные руководящие идеи, но и выводы, которые могут быть из них сделаны.

Одна из наиболее важных характерных черт современной физики состоит в том, что выводы, сделанные из исходных идей, имеют не только качественный, но и количественный характер. Рассмотрим опять камень, падающий с башни. Мы видели, что его скорость возрастает по мере того, как он падает, но мы хотели бы знать гораздо больше. А именно: каково это изменение? Каковы положение и скорость камня в любой момент после того, как он начал падать? Нам хочется уметь предсказывать события и определять с помощью эксперимента, подтверждает ли наблюдение эти предсказания, а тем самым и исходные положения.

Чтобы сделать количественные выводы, мы должны использовать математический язык. Самые фундаментальные идеи науки по существу своему просты и, как правило, могут быть выражены языком, понятным каждому. Но чтобы охватить всю совокупность следствий, выводимых из той или иной общей идеи, требуется знание очень тонкой техники исследования. И если мы хотим сделать выводы, которые можно сравнить с результатами эксперимента, нам необходима математика как орудие исследования. Поскольку мы касаемся только фундаментальных физических идей, мы можем избежать языка математики. Так как в этой книге мы проводим это последовательно, мы должны иногда ограничиваться ссылкой без доказательств на некоторые результаты, необходимые для понимания важных аргументов, возникающих в дальнейшем развитии. Этот отказ от математического языка оплачивается потерей в точности и необходимостью временами ссылаться на результаты без указания на то, как они были достигнуты.

Очень важный пример движения — движение Земли вокруг Солнца. Известно, что её путь представляет собой замкнутую кривую, называемую эллипсом (рис. 17). Построение векторной диаграммы изменения скорости показывает, что сила, действующая на Землю, направлена к Солнцу. Но после всего сказанного это скудная информация. Нам хотелось бы уметь предсказывать положение Земли и других планет для любого произвольного момента времени. Нам хотелось бы предсказать дату и продолжительность следующего солнечного затмения и многие другие астрономические события. Всё это возможно сделать, но не на основе одной только исходной идеи, указанной выше, ибо необходимо знать не только направление силы, но и её абсолютное значение, её величину. Вдохновенной догадкой об этом мы обязаны Ньютону. Согласно его закону тяготения, сила притяжения между двумя телами весьма просто зависит от расстояния их друг от друга: она уменьшается, когда увеличивается расстояние. Когда расстояние удваивается, она уменьшается в 2∙2=4 раза; когда расстояние увеличивается в три раза, она уменьшается в 3∙3=9 раз.