Страница 5 из 57
А может быть, верно и обратное предположение, что из материала астероидов создана планета, например с массой Меркурия! Возможно, мы узнаем о происхождении астероидов лишь тогда, когда будем больше знать о нашей солнечной системе, об ее образовании, величине, возрасте, движении в мировом пространстве.
Великие загадки нашей солнечной системы отнюдь не исчерпаны поиском дальних планет на внешних орбитах или тайнами астероидов и метеоритов. Время от времени появляются сообщения, что недалеко от Солнца обнаружены и сфотографированы планетоподобные космические образования. Может быть, речь идет об одной или даже о нескольких планетах? Пусто ли пространство между Солнцем и Меркурием? Парижский астроном Урбен Леверьер, которому принадлежит заслуга открытия Нептуна, уже сто лет тому назад предположил, что должна быть еще планета, он даже дал ей имя: Вулкан. Между тем при затмениях Солнца недалеко от него наблюдаются объекты, которые не являются кометами, как считали раньше, они движутся по траекториям, сходным с планетарными, то есть могут быть в некотором роде планетами. Верны ли эти наблюдения? Мнения тут расходятся.
Сколько же нам нужно еще исследовать, замерять, наблюдать, рассчитывать, чтобы составить себе представление о картине нашей крошечной солнечной системы? Это элементарная основа, на которой строится здание нашего представления о мире, а подчас трудно отделаться от впечатлений, что мы скорее удаляемся от этой цели, чем приближаемся к ней.
Сколько надежд связывали с непосредственным исследованием Луны, полагая, что хотя бы оно позволит решить некоторые загадки. Но все, что удалось при этом узнать, было уже либо известно, либо предсказано, за исключением некоторых деталей о структуре поверхности Луны: мертвые камни, осколки метеоритов, кратеры, безводные пространства, отсутствие атмосферы, песок, пустыни. Мы, конечно же, никоим образом не хотим умалить подвига космонавтов, значения их лунного путешествия, фантастических технических достижений, которые сделали возможным этот полет. Но тех, кто надеялся по кусочку лунного камня прочесть историю происхождения нашей солнечной системы, а такую надежду высказал недавно один американский физик, постигло глубокое разочарование. Даже о происхождении Луны мы сейчас знаем не больше, чем 20 или 30 лет тому назад.
Теперь, когда мы знаем, что Луна не сообщит нам сенсационных тайн о происхождении нашего мира и что наши ближние соседи по солнечной системе, Марс и Венера, представляют собой лишь негостеприимные, пыльные, терзаемые морозами и жарой, изъязвленные кратерами пустыни, астрономы, физики, теоретики, разрабатывающие теорию относительности, начинают набрасывать картину, живо напоминающую нам страницы фантастических романов.
Их фантазии окрыляет идея о становлении и старении звезд, они предполагают, что вначале, возможно, существовало видимое «горячее» облако газа, которое постепенно охлаждается и затем сгущается. Так можно представить себе час рождения крохотного, но все же твердого небесного тела, звезды.
Если же имеются очень большие массы газов, которые затем уплотняются, то на отдельные частицы не только начинают влиять мощные силы притяжения — при достаточной плотности могут трансформироваться атомные ядра, при этом они отдают тепло, развивая высокие температуры. Растущее тепловое движение частиц наталкивается на препятствие в виде дальнейшего уплотнения материи, и, пока происходят ядерные процессы, наступает равновесие между силами уплотнения (сжатия) и силами расширения (ядерного взрыва). Это равновесие зависит, подобно «критической массе» ядерного реактора, от массы системы. Во всяком случае, должен прийти момент, когда ядерная энергия будет исчерпана и равновесие станет нестабильным, в этом случае масса обрушивается внутрь самой себя. Этот процесс замедляется наличием отталкивающих друг друга электронов, имеющих одинаковые заряды, в результате чего вновь наступает равновесие. Конечный продукт такого процесса астрономы называют «белым карликом» — это маленькая, медленно охлаждающаяся звезда.
Если же, напротив, звезда в ее первоначальном виде имела бóльшую массу, например, как наше Солнце, то тогда силы гравитации могут взять верх над силами отталкивания электронов. Звездная масса, так сказать, проваливается через заряженное облако, ядерные силы сталкиваются, и энергия выбрасывается в мировое пространство в виде невероятной световой вспышки. В этом случае от звезды останется нейтронное ядро, точка диаметром 10 километров. Возможно, что открытые, в 1968 году пульсары именно такие нейтронные звезды.
Думая о происходящем, мы как будто попадаем в какую-то сказочную страну фантазии. Что же произойдет, если массы звезды будет настолько больше, что ни электронное облако, ни ядерные силы будут не в состоянии задержать свертывание под действием гравитационных сил — гравитационный коллапс? Что произойдет, если огромная масса неудержимо будет стремиться к одной точке? Здесь идеи теоретиков физики оставляют далеко позади литературную фантастику.
Новые миры, о которых здесь шла речь, основываются, в частности, на работах гениального немецкого астрофизика Карла Шварцшильда. Конечно, нам известны случаи, когда в науке дебютировали молодые таланты, но даже для нашего века жизнь Шварцшильда, который уже школьником опубликовал несколько работ в солидных научных журналах, в 26 лет стал доцентом университета, в 28 — профессором и директором всемирно известной обсерватории, — редкое явление.
Наконец, Шварцшильд становится членом Прусской академии наук, а затем взлет его карьеры, подобный комете, внезапно прерывается — начинается первая мировая война, Шварцшильда призывают в солдаты, он заболевает на фронте и умирает в Потсдаме 11 мая 1916 года в возрасте 42 лет. В год своей смерти, незадолго до опубликования теории относительности, Шварцшильд выдвигает математический постулат, согласно которому ускорение гравитации может стать бесконечно большим относительно неподвижного наблюдателя. Одним из самых причудливых следствий его явилось бы то, что свет звезды, которая подвержена необратимому гравитационному коллапсу, стал бы виден наблюдателю вначале с задержкой, а затем и вовсе не достигал бы наблюдателя! Он смог бы регистрировать только гравитационное поле, действие силы тяжести. Такое тело, упавшее внутрь самого себя, невидимое для наблюдателя и остающееся на небе черным пятном, астрофизики называют «черной дырой».
Хорошо свидетелю гравитационного коллапса, если он находится на достаточном удалении от звезды. Но что произойдет с теми, кто живет на поверхности небесного тела, пораженного этим процессом? Предположим, что они сознательно участвовали в нем, тогда их увлечет в центр подобного образования, в область, где пространственные координаты (длина, ширина и высота) становятся временными категориями. Такие существа попали бы в совершенно «иной мир», из которого нельзя вернуться. Они будут жить в совсем иной системе измерений, которая никогда не может, так утверждают математики, вступить в контакт с нашей системой.
Если продолжить подсчеты, провести теоретические изыскания еще дальше и предположить существование симметричной к первой и также являющейся результатом гравитационного коллапса системы, то получим еще один феномен: антигравитационный коллапс — неудержимое расширение.
Оставим пока все эти системы и феномены, заметим для себя лишь то обстоятельство, что астрофизики считают антигравитационный коллапс явлением, которое могло бы наблюдаться и в нашем мире. На случай, если это произойдет, у них приготовлено уже и название: «белая дыра».
Как будет выглядеть наш мир в будущем? Ведь и представление о нем, основанное на теории относительности, не последнее слово в той картине мира, которую создает наука. Некогда думали, что мир — это Земля (и светящиеся точки на «небе»), потом, что это — солнечная система, Млечный Путь, ограниченное бесконечное пространство многих галактик. Теперь мы уже говорим о «гравитационных мирах».