Страница 77 из 88
D-брана — это не просто любого вида брана. Она имеет совершенно особые свойства, а именно: к ней могут прикрепляться фундаментальные струны. Рассмотрим случай DO-браны. Здесь D означает, что это D-брана, а О указывает, что она нульмерна. Так что DO-браны — это частицы, на которых могут оканчиваться фундаментальные струны.
Dl-браны часто называют D-струнами, потому что они одномерны и сами являются разновидностью струн, хотя их не следует путать с фундаментальными струнами[145]. Обычно D-струны значительно тяжелее фундаментальных струн. D2-бpaны — это мембраны, вроде резиновых листов, но опять же, с тем свойством, что на них могут оканчиваться фундаментальные струны.
Были ли D-браны странной произвольной выдумкой, которую Полчински добавил к теории струи? В его первой исследовательской работе, я думаю, так и могло быть. Физики-теоретики часто изобретают новые концепции просто для того, чтобы поиграть с ними и увидеть, к чему они приводят. На самом деле в 1994 году, когда Джо впервые показал мне идею D-бран, это было как раз в духе такого разговора: «Гляди, мы можем добавить в теорию струн новый объект. Правда, забавно? Давай копнём его свойства».
Но где-то в 1995 году Джо осознал, что D-браны заполняют колоссальную математическую дыру в теории струн. Их существование было в действительности необходимо для завершения растущей паутины логики и математики теории. И D-браны оказались как раз тем недостающим секретным ингредиентом, необходимым для построения экстремальной чёрной дыры.
Математика теории струн вознаграждает усилия
В 1996 году за дело взялись Вафа с Энди Строминджером. Объединив струны и браны, они смогли сконструировать экстремальную чёрную дыру с большим и, без сомнений, классическим горизонтом. Поскольку экстремальная чёрная дыра рассматривалась как крупный классический объект, квантовая дрожь могла оказать лишь ничтожно малое влияние на горизонт. Теперь пространства для сомнений не оставалось. Теория струн дала верное количество скрытой информации, предполагаемое формулой Хокинга, без всяких неоднозначных множителей, которые равны то ли двум, то ли пи, и без знака пропорциональности.
Это не была обычная чёрная дыра вроде тех, о которых упоминают в школе. Объект, который Строминджер и Вафа построили из струн и D-бран, походил на кошмарный сон инженера, но это была простейшая конструкция, имеющая большой классический горизонт, который был им нужен. Потребовались все математические хитрости теории струн, включая струны, D-браны, полный набор дополнительных измерений и много чего ещё. Сначала они взяли несколько DS-бран, заполняющих пять из шести свёрнутых измерений пространства. Вдобавок к этим внедрённым DS-бранам они обернули большое количество Dl-бран вокруг свёрнутых измерений. А затем добавили струны, присоединённые обоими своими концами к D-бранам. И вновь открытые куски струн должны были играть роль атомов горизонта, которые содержат энтропию. (Если вы немного растерялись, не беспокойтесь. Мы коснулись вещей, к лёгкому пониманию которых человеческий мозг не приспособлен.)
Строминджер и Вафа выполнили те же шаги, что уже делались ранее. Сначала они установили рукоятки на ноль, так чтобы гравитация и другие силы исчезли. Без этих сил, которые всё усложняют, можно было точно подсчитать, сколько энтропии запасено во флуктуациях открытых струн. Технически расчёты были сложнее и тоньше, чем всё, что предпринималось до сих пор, но, проявив изобретательность, они в этом деле преуспели.
Следующим шагом стало решение эйнштейновских уравнений поля для случая экстремальной чёрной дыры. На этот раз для вычисления площади не потребовалось основанной на неопределённости растягивающей процедуры. К огромному их (и моему) удовлетворению, Строминджер и Вафа обнаружили, что площадь горизонта и энтропия были не просто пропорциональны; информация, скрытая в извивах струн, присоединённых к бранам, в точности согласовывалась с формулой Хокинга. Они вбили этот гвоздь.
Как это часто бывает, до этих новых идей почти одновременно дошла и другая команда исследователей. Как раз когда Строминджер и Вафа выполняли свою работу, один из самых ярких физиков нового поколения ещё был студентом в Принстоне. Научным руководителем Хуана Малдасены был Курт Каллан (С из CGHS). Малдасена и Каллан тоже использовали DS-браны совместно с Dl-бранами и открытыми струнами. Каллан и. Малдасена опубликовали свою статью через несколько недель после Строминджера и Вафы. Их метод несколько отличался, но вывод в точности подтвердил результаты Строминджера и Вафы.
Фактически Каллан и Малдасена смогли пойти немного дальше предыдущей работы и научились работать со слегка неэкстремальными чёрными дырами. Экстремальная чёрная дыра — довольно странное явление в физике. Это объект с энтропией, но без тепла и температуры. В большинстве квантово-механических систем при отводе всей энергии всё жёстко фиксируется на своих местах.
Например, если отвести всё тепло от кубика льда, то в результате получится идеальный кристалл абсолютно без дефектов. Любая перестановка молекул воды потребовала бы энергии, а значит, и немного тепла. У льда, от которого отведено всё тепло, не остаётся ни избыточной энергии, ни температуры, ни энтропии.
Но есть исключения. Некоторые особые системы имеют множество состояний, в которых достигается одинаковая минимальная энергия. Иными словами, даже после того, как вся энергия отведена, есть возможности такой реорганизации системы, чтобы скрывать в ней информацию, причём делать это без добавления энергии. Физики говорят, что у таких систем имеется вырожденное основное состояние. Системы с вырожденным основным состоянием имеют энтропию — могут скрывать информацию — даже при температуре абсолютного нуля. Экстремальные чёрные дыры — идеальный пример таких странных систем. В отличие от обычных шварцшильдовских чёрных дыр они находятся при температуре абсолютного нуля, а значит, не испаряются.
Давайте вернёмся к примеру Сена. В его варианте все извивы струны движутся в одном направлении и потому не могут сталкиваться друг с другом. Но добавим извивы, движущиеся в противоположном направлении. Как можно ожидать, сталкиваясь с первыми, они будут порождать некоторую путаницу. В действительности они разогреют струну и поднимут её температуру. В отличие от обычных чёрных дыр эти почти экстремальные чёрные дыры не испаряются полностью, они испускают избыточную энергию и возвращаются в экстремальное состояние.
Каллан и Малдасена смогли применить теорию струи для вычисления скорости, с которой испаряется почти экстремальная чёрная дыра. Способ, которым теория струн объясняет испарение, восхитителен. Когда два извива, движущихся в противоположных направлениях, сталкиваются, они образуют один извив большего размера, который выглядит примерно вот так.
Как только образуется этот извив, ничто не препятствует его отрыву по модели, которая не отличается от той, что мы обсуждали с Фейнманом в 1972 году.
Но Каллан и Малдасена сделали больше, чем говорили. Они выполнили очень детальные расчёты испарения. Замечательный факт состоит в том, что их результаты в точности совпадают с методом Хокинга, предложенным двадцатью годами раньше, за исключением одного важного отличия: Малдасена и Каллан использовали только общепринятые методы квантовой механики. Как мы уже обсуждали в предыдущей части, квантовая механика хотя и содержит статистический элемент, но не допускает потерь информации. Поэтому исключена возможность, чтобы информация пропадала в ходе процесса испарения.
И вновь, похожие идеи разрабатывались другими физиками. Совершенно независимо две пары индийских физиков Самит Дас и Самир Матур, а также Гаутам Мандал и Стента Вадиа из бомбейского Института Тата (откуда вышел и Ашок Сен), выполнив расчёты, пришли к подобным же результатам.
145
То, что в теории струн имеется два типа струн, может показаться странным и до некоторой степени произвольным. Существуют мощные математические симметрии, называемые дуальностями, связывающие фундаментальные струны и D-струны. Эти дуальности очень похожи на дуализм электрических зарядов и магнитных монополей, гипотезу о которых выдвинул в 1931 году Поль Дирак. Они оказали сильное влияние на некоторые области чистой математики.