Добавить в цитаты Настройки чтения

Страница 23 из 30



* * *

Кантор знал, что — число  точек, содержащихся на любом отрезке прямой.

Это означает, что вне зависимости от размера двух отрезков прямой число точек на них будет одинаковым. Может показаться удивительным, но очень простое доказательство этого утверждения было известно еще древним грекам.

Даны два отрезка, а и b. Чтобы установить взаимно однозначное соответствие между их точками, достаточно выполнить следующее построение. Соединим концы отрезков прямыми с и d, которые пересекутся в точке Е.

Выберем произвольную точку F отрезка а и соединим отрезком эту точку с точкой Е — точкой пересечения прямых с и d. Точка G, в которой эта прямая пересечет отрезок Ь, и будет искомым отображением точки F. Очевидно, что таким образом можно сопоставить каждой точке отрезка а точку отрезка b и наоборот. Это доказывает, что число точек на обоих отрезках одинаково.

Затем Кантор выполнил смертельный номер: взяв за основу один из этих отрезков, он построил квадрат

и смог доказать, что кардинальное число множества всех точек квадрата равно , то есть число точек квадрата равно числу точек на любой его стороне. Затем он сделал еще один шаг и, использовав этот квадрат в качестве основания, построил куб:

И вновь доказал, что число точек, содержащихся в кубе, также равно .

«Я вижу это, но я в это не верю», — писал Кантор Дедекинду в 1877 году, пытаясь объяснить эти взаимно однозначные соответствия между фигурами, имеющими разное число измерений. Кантор доказал положение, противоречащее любым интуитивным и математическим представлениям о размерности: все одномерные, двумерные и трехмерные объекты, с которыми он работал, содержали одно и то же число точек, равное .

Это было невероятно, и этот результат означал, что на любом, сколь угодно малом, отрезке содержится столько же точек, сколько во всей известной Вселенной. Внутри бесконечно малого оказалось заключено нечто бесконечно большое.

В действительности дело этим не ограничивается:  также равно числу точек в произвольном гиперпространстве. Иными словами, если бы мы могли проникать в пространства высших измерений (четырех-, пятимерные пространства и т. д.),  означало бы число точек, содержащихся в этих пространствах.

Вы увидели, что множества  (натуральных чисел),  (целых чисел) и  (рациональных чисел) содержат одинаковое число элементов (то есть являются равномощными) — бесконечное число, обозначенное Кантором как . Множество вещественных чисел получается, если расширить множество рациональных чисел иррациональными. Возникает вопрос: существует ли столько иррациональных чисел, чтобы общее количество вещественных чисел равнялось ?. Ответ на этот вопрос достаточно любопытен и не лишен таинственности. Однако чтобы понять его, сначала следует узнать о так называемых трансцендентных числах.

Уравнение одной переменной х степени n с рациональными коэффициентами — это равенство вида

Сnхn + Сn-1х n-1 +… + С1х + Сn = 0.

Тому, кто не знаком с подобными выражениями, оно может показаться сложным, но это не так. В этом контексте уравнение — не более чем равенство, в левой части которого записаны слагаемые с неизвестным х, возведенным в некоторую степень и умноженным на некие числа (коэффициенты), а в правой части записан ноль. Решить уравнение означает найти такое значение х, при котором уравнение обращается в верное равенство. Например, в уравнении

х 2 = 0

коэффициенты равны 1 и — 2, а решением является х = 2.



Иррациональное число, например √2, является результатом решения уравнения вида

х2 2 = 0.

По определению, число х является алгебраическим, если оно выступает корнем (решением) алгебраического уравнения с целыми коэффициентами. Проясним некоторые понятия, чтобы сделать это определение более понятным. Алгебраическое уравнение представляет собой многочлен, приравненный к нулю, например

Зх2 5х 1 = 0,

где 3, 5 и —1 — коэффициенты. Выражение

√Зх5 5х2 = 0

также является уравнением, но его первый коэффициент не является целым числом, следовательно, это уравнение нельзя назвать алгебраическим.

Число 3 является алгебраическим, так как оно выступает решением уравнения

х 3 = 0.

Очевидно, что любое рациональное число является алгебраическим, так как всегда можно записать алгебраическое уравнение, решением которого будет это число.

Как мы уже показали, √2 является решением уравнения х2 2 0, и, следовательно, это также алгебраическое число.

Если число не является алгебраическим, его называют трансцендентным. Этот термин, введенный Эйлером, происходит от латинского transcendere — «превосходить» и означает, что вычисление таких чисел в некотором роде выходит за рамки привычных математических операций. Доказать трансцендентность числа порой очень и очень непросто. Французский математик Жозеф Лиувилль (1809–1882) доказал существование трансцендентных чисел и открыл метод, позволяющий получить некоторые из них. Первым числом, которое удостоилось чести быть помещенным в список трансцендентных, стало (число Лиувилля), определение которого слишком сложно, чтобы приводить его здесь. Записывается оно следующим образом:

L = 0,1100010000000000000000010000…

В 1873 году французский математик Шарль Эрмит (1822–1901), ученик Лиувилля, доказал, что е (основание натурального логарифма, приближенное значение которого равно 2,718281828459043235360287471352…) не является алгебраическим числом. Получить это доказательство было непросто — оно не далось самому Эйлеру.

Одно из самых известных чисел в истории математики — это число π («пи»), равное отношению длины окружности к ее диаметру. Доказательство трансцендентности е оказалось столь сложным, что Эрмит не решился взяться за аналогичное доказательство для числа π, о чем написал Карлу Вильгельму Борхардту (1817–1880): «Я не осмелился приступить к доказательству трансцендентности числа π. Если кто-то другой попытается это сделать, не будет человека счастливее меня, но поверьте мне, любезный друг, что это доказательство потребует немалых усилий».

Трансцендентность числа π была доказана Линдеманом лишь несколько лет спустя, в 1882 году. Это открытие стало важной вехой в истории математики, так как означало невозможность решения задачи о квадратуре круга.