Страница 2 из 34
Эдвин Эбботт в 1884 г., когда была опубликована «Флатландия».
Лучший друг Эбботта, учитель математики Ховард Кэндлер, поддерживающий с ним обширную переписку, преподавал в школе Аппингем (Uppingham School).
Кстати, английский математик Чарльз Хинтон, один из главных специалистов по четвертому измерению, также преподавал в этой школе. Возможно, Эбботт познакомился с Хинтоном в Аппингеме или узнал об этих идеях через своего друга Кэндлера. В любом случае он достаточно ясно представлял себе концепцию четвертого измерения, чтобы использовать ее в качестве метафоры социального и богословского устройства разделенного на классы общества викторианской Англии.
Как мы уже видели, «Флатландия» — это не просто научно-фантастический роман. По своей сути это аллегория, которая использует геометрические формы и размерности для описания насущных проблем современности. Помимо изложения математических понятий, связанных с размерностями, в книге явно прослеживаются еще две линии: социальная сатира и богословские размышления.
С социальной точки зрения «Флатландия» — явная сатира на английское общество того времени с его жесткой системой классов и сопротивлением переменам любого рода. Эбботт описывает жестокость, с которой обращались с наиболее нуждающимися слоями населения, лишая их возможности образования — исключительной привилегии социальной элиты. Он также выступает против подчиненного положения женщин и противодействия новым идеям. Социальную сатиру использовали и другие уважаемые предшественники Эбботта, такие как Джонатан Свифт в книге «Путешествия Гулливера» (1726) и Льюис Кэрролл с его «Алисой в стране чудес» (1865).
Наряду с социальной сатирой Эбботт также обращается к интересовавшим его богословским вопросам, которые он более явно затрагивал в других своих книгах и статьях. Некоторые пассажи, такие как путешествие главного героя книги Квадрата в страны других размерностей, можно интерпретировать как метафору мистического опыта потусторонней реальности. Кроме того, автор критикует веру в чудо как основу религиозных убеждений и пытается показать, что наука в состоянии обеспечить прогресс человеческого рода через развитие знаний о Вселенной, но никогда не сможет приблизить нас к Богу. Наконец, можно наблюдать определенную параллель между попытками Квадрата объяснить таинства третьего измерения и евангелистской деятельностью апостолов.
Тем не менее, именно математическое содержание выделяет «Флатландию» из ряда других книг того времени. Во времена Эбботта споры о четвертом измерении были в самом разгаре. Предпринималось множество попыток понять, что оно означает, и как-то визуализировать его. В 1952 г. философ и богослов Карл Хайм так описал серьезную проблему человеческой интуиции в постижении четвертого измерения: «Прогресс математики и физики дает нам крылья поэтического воображения, выводящего нас за границы евклидового мира в попытке представить себе пространство, в котором существует более трех координатных осей, перпендикулярных друг другу. Но все эти усилия выйти за пределы нашего мира в конечном итоге всегда приводят в трехмерное евклидово пространство. Пытаясь открыть четвертое измерение, мы сталкиваемся с непреодолимым препятствием. Нет никаких сомнений, что можно производить вычисления в пространствах высших размерностей, но мы не в состоянии вообразить их. Мы, как в тюрьме, заперты в пространстве, в котором мы оказались в начале нашего существования. Точно так же двумерные существа могут верить в третье измерение, но они не могут видеть его».
Можно сказать, что многомерная аналогия, использованная Эбботтом и являвшаяся одним из основных инструментов того времени, приблизила нас к возможности «увидеть» невидимое.
«Флатландия» написана от лица главного героя, математика Квадрата, который рассказывает о странном приключении, которое он пережил. В результате он узнал много нового об устройстве Вселенной, но оказался заключенным в тюремную камеру, в которой и пишет свою историю. Таким образом, первая часть книги дает описание его мира, двумерной Флатландии, и общества, в котором он живет. Именно эта часть содержит большую часть социальной сатиры.
Как мы уже говорили, мир главного героя является плоским, двумерным.
(«Представьте себе огромный лист бумаги», — пишет Эбботт.) В этом мире живут прямые линии, квадраты, пятиугольники, шестиугольники и другие многоугольники. За исключением укреплений, казарм и административных зданий, дома, в которых живут обитатели этого мира, имеют пятиугольную форму. Крыши домов ориентированы на север, так как сила тяжести направлена на юг, что означает, что дождь всегда «идет» с севера на юг. В дополнение к этому в домах имеется две двери: одна для мужчин, другая для женщин.
Типичный пятиугольный дом во Флатландии (иллюстрация Эдвина Эбботта).
Далее Эбботт описывает жителей этого любопытного мира. Женщины имеют вид отрезков прямых; солдатам и представителям низших слоев населения досталась форма равнобедренных треугольников. Средний класс состоит из равносторонних треугольников, а джентльмены и лица, владеющие какой-либо профессией, имеют форму квадратов и пятиугольников.
Затем идут благородные сословия. Их низшую ступень занимают шестиугольники, но по мере продвижения вверх число сторон у фигуры возрастает. Наконец, когда число сторон многоугольника становится столь велико, что фигуру нельзя отличить от окружности, ее причисляют к жрецам. Внутренний угол фигуры (самый маленький в равнобедренном треугольнике), очевидно, связан с числом сторон и отражает социальное положение и образование фигуры. В дополнение к этому дети мужского пола имеют на одну сторону больше, чем их отцы, хотя это не всегда так среди торговцев и еще реже встречается среди солдат и низших слоев рабочих. Если каким-то образом сын равнобедренного треугольника рождается равносторонним, то его забирают у родителей, после чего его усыновляет бездетная чета равносторонних треугольников.
Женщины являются отрезками прямых линий — без углов, без образования, без социальных прав. Это описано Эбботтом в одном из пассажей книги: «Не следует думать, будто наши женщины лишены увлечений. Но, к сожалению, увлечение, охватившее особу слабого пола в данный момент, всегда оказывается сильнее любых разумных соображений. Причину этого, разумеется, следует искать в неудачной конфигурации женского тела. Ибо женщины, не имея надежд получить собственный внутренний угол (в этом отношении они уступают даже последнему из равнобедренных треугольников), полностью лишены способности рассуждать, не обладают ни ясностью мышления, ни здравостью суждений, ни способностью обдумать заранее свои поступки, ни даже памятью. Поэтому в приступах ярости женщины не помнят своих обещаний и не признают никаких различий».
Геометрические формы, представляющие различные социальные классы жителей Флатландии.
В этом обществе мужчины, особенно представители высших классов, пытаются оправдать социальную изоляцию женщин и отсутствие у них прав, утверждая, что такое положение является не результатом дискриминации со стороны общества, а лишь следствием самой природы женщин, конфигурации их тел и размеров.
Жители Флатландии узнают друг друга различными способами. Низшие классы и женщины делают это на ощупь. Равносторонние треугольники, квадраты и пятиугольники используют слух, отличая других жителей по голосам. Высшие классы различают другие фигуры по внешнему виду. Любой житель Флатландии выглядит со стороны как прямая линия, однако постоянный туман, который держится в этом мире, позволяет определить глубину и, следовательно, углы другой фигуры. Из-за действия тумана видимость уменьшается с расстоянием; таким образом, когда угол мал, как у равнобедренных треугольников, его стороны начинают расплываться почти сразу, а для большего угла это происходит медленнее. Распознавание на ощупь преподается в школах, в основном с помощью практических тренировок. На уроках используются равнобедренные треугольники с углами от полградуса до десяти градусов. Эти фигуры не обладают достаточным интеллектом для использования хотя бы в качестве пушечного мяса и поэтому играют роль школьного реквизита. Науку и искусство распознавания по внешнему виду преподают представителям элиты в университетах, но для этого требуется изучение геометрии.