Страница 20 из 52
Приведем пример сечения. Левый класс — все отрицательные рациональные числа, правый класс — нуль и все положительные рациональные числа. Очевидно, что мы имеем здесь сечение в дедекиндовом смысле, так как каждое рациональное число войдет либо в первый, либо во второй класс (но не в оба сразу), ни один из классов не пуст, любое отрицательное число меньше нуля и каждого из положительных чисел.
Оказывается, над сечениями можно производить операции. Возьмем два каких-нибудь сечения, например следующие. В первом — его мы обозначим через С1 - левый класс (назовем его А1) образуют все рациональные числа, меньшие единицы, правый (В1) —не меньшие единицы. Во втором сечении (С2) левый класс (А2) образован всеми рациональными числами, меньшими двойки, а правый (В2) остальными рациональными числами. После этого зададим следующее разбиение множества всех рациональных чисел на два подмножества: к первому отнесем все числа, которые могут быть представлены суммой двух слагаемых — числа из множества А1 и числа из множества А2 ко второму — все числа, которые представимы в виде суммы числа из множества В1 и числа из множества В2. Будет ли это разбиение сечением?
Нетрудно видеть, что будет. Оба рассматриваемых подмножества не пусты; поскольку первое слагаемое одной суммы меньше первого слагаемого другой суммы и то же относится ко вторым слагаемым, то и первая сумма меньше второй суммы. Можно показать, что выполнено и требование того, чтобы каждое рациональное число обязательно попадало в какое-то одно, и только одно, из двух подмножеств. Итак, разбиение, построенное указанным способом по двум заданным сечениям, есть тоже сечение. Его называют суммой двух исходных сечений и обозначают С1 + С2. Очевидно, что подобным образом возможно построить сумму любых двух сечений. Аналогично можно получить произведение двух сечений С1 и С2: левый его класс составят произведения сомножителей, взятых из левых классов исходных сечений, а правый — взятых из правых классов (правда, здесь нужно сделать некоторые оговорки, связанные с тем, что произведение отрицательных чисел есть число положительное, но они достаточно просты и для нашего изложения несущественны). В приведенном выше примере сумма сечений оказывается сечением, левый класс которого состоит из рациональных чисел, меньших тройки, а произведение — сечением с левым классом, состоящим из чисел, меньших двойки. Но число 3 есть результат сложения, а число 2—результат умножения чисел 1 и 2. Вообще всегда, когда в каждом из исходных сечений есть либо наибольшее число левого класса, либо наименьшее число правого (пограничное число), сумма сечений также будет иметь пограничное число — сумму пограничных чисел исходных сечений; то же справедливо и в отношении произведения (его пограничное число будет произведением пограничных чисел исходных сечений). Иными словами, сложить или перемножить сечения в этом случае — значит сложить или перемножить их пограничные числа и взять Результата качестве пограничного числа.
Но можно задать такое сечение, у которого пограничного числа не окажется. Вот пример фактического построения такого сечения. Левый его класс составляют положительные рациональные числа, квадрат которых меньше двух, число нуль и все отрицательные рациональные числа, а правый — все положительные рациональные числа, квадрат которых больше двух. Такое разбиение является сечением: классы не пусты, каждое число левого класса меньше каждого числа правого класса, всякое рациональное число принадлежит либо левому, либо правому классу.
Последнее условие оказывается выполненным потому, что нет такой дроби (рационального числа) p/q,. где p и q — целые и q отлично от нуля, квадрат которой был бы равен двум (доказательство этого факта, восходящее еще к Пифагору, весьма просто; оно приводится во многих учебниках анализа).
Покажем, что у полученного сечения не существует пограничного числа, то есть, что ни в левом классе нет наибольшего числа, ни в правом классе нет наименьшего.
Проведем доказательство лишь первого утверждения, поскольку второе доказывается аналогично. Отсутствие наибольшего числа в левом классе означает, что какое бы положительное рациональное число а, квадрат которого меньше двух, мы ни взяли, существует такое целое число n > 0, что (а + 1/n)2 < 2. Это значит, что рациональное число a + 1/n также будет принадлежать левому классу и, следовательно, A не может считаться наибольшим.
Будем исходить из очевидно верного утверждения, что для любого положительного рационального числа а, квадрат которого меньше двух, существует такое целое положительное число n, что выполняется неравенство
(2a+1)/(2-a2) < n
Действительно это утверждение может быть получено по аксиоме Архимеда (для любого рационального числа можно найти натуральное число, его превосходящее). Но неравенство(1), как легко установить с помощью простых тождественных преобразований, равносильно неравенству
2a/n + 1/n < 2 - a2
Поскольку 2a/n + 1/n2 << 2a/n + 1/n. то верно, что 2a/n + 1/n2 < 2 - a2, а это неравенство равносильно неравенству (а + 1/n)2 < 2. Утверждение доказано[7].
Теория Дедекивда основана на том, что действительные числа отождествляются с сечениями в области рациональных чисел. Это удается сделать потому, что для сечений оказывается возможным определить операции сложения, вычитания, умножения и деления, а также отношения равенства и неравенства. При этом сечения, имеющие пограничные числа, отождествляются с рациональными числами, а сечения, не имеющие пограничных чисел с иррациональными (сечение в рассмотренном нами случае отождествляется с числом √2)[8].
При ознакомлении с теорией сечений может возникнуть недоумение: как можно определять (действительные) числа через объекты, как будто, совершенно другой природы? Но это недоумение легко снимается. В самом деле, что такое числа? Можно считать, что это — такие сущности, которые могут находиться в определенных отношениях и над которыми можно производить определенные операции, причем эти отношения и операции обладают определенными свойствами (коммутативность, дистрибутивность и т. д.). Сечения как раз и могут находиться в отношениях равенства и неравенства и допускают такие операции над собой, которые обладают нужными свойствами. Определены же сечения, как считал Дедекинд, абсолютно четко и логично — они введены на основе рациональных чисел, по поводу которых никаких сомнений у математиков не возникает.
Подход Дедекинда был заметным шагом вперед в уяснении «природы» математического анализа. Он позволил создать стройную теорию действительных чисел, в частности, доказать важную теорему о свойстве сплошности (непрерывности) множества действительных чисел, на которую опираются все главные теоремы анализа. Теория Дедекинда была основана, однако, на идее, которая впоследствии оказалась уязвимой для критики, на идее актуально бесконечного множества. К ее рассмотрению нам теперь и следует обратиться.
В теории Вейерштрасса иррациональные числа понижаются как бесконечные непериодические дроби, то есть Ограниченно продолжающиеся вереницы цифр (например десятичных знаков), которые нельзя фактически выписать и вряд ли можно представить в воображении В теории Дедекинда всякое действительное число — это «компактная» система из двух объектов: левого и правого классов сечения во множестве рациональных чисел. И все же и в этой теории фатальный призрак трудностей, связанна с идеей бесконечности, призрак, преследующий математику с античных времен[9], не изгоняется, а лишь маскируется под нечто «конечнообразное»: ведь множества, образующие левый и правый классы, бесконечны.
Дедекиндово построение хорошо раскрывает нам образ мышления, который был присущ нескольким поколениям ученых. Всмотримся пристальнее в ход рассуждений, ведущих к определению действительного числа по Дедекинду. В нем можно усмотреть два пункта, уязвимых для критики.