Страница 3 из 9
Рис. 6. Линия передачи электричества.
Текущее в проводах электричество образует электрический ток. Чем больше электричества протекает в одну секунду через провод, тем больший ток течёт по нему.
6. Что представляет собою электричество?
Для ответа на вопрос — что же представляет собою электричество? — нужно знать, из чего состоят различные тела природы. Это изучается наукой, которая называется физикой.
Учёные-физики установили, что каждое тело, твёрдое, жидкое или газообразное, состоит из отдельных очень мелких частичек, называемых атомами. Атом же, в свою очередь, состоит из нескольких ещё более мелких частиц, заряженных электричеством. В середине атома расположена его основная часть — ядро атома. Это ядро заряжено положительным электричеством. Вокруг ядра вращаются частицы вещества, называемые электронами. Электрон заряжен отрицательным электричеством.
В обычном состоянии атом содержит одинаковое количество положительного и отрицательного электричества и поэтому он не проявляет своих электрических свойств.
Однако, если каким-либо образом разбить атом на части — отделить от него один или несколько электронов, то оставшаяся часть будет иметь больше положительного электричества, чем отрицательного. Тогда такой неполный атом проявит себя как положительно заряженное тело: он будет стремиться притянуть из окружающей среды недостающие ему электроны. Оторвавшиеся же от атома электроны будут проявлять свойства отрицательного электричества.
Этот отрыв и происходит, например, при натирании стекла мехом или плотной бумагой; его можно получать и другими способами. Электрический ток в проводе и представляет собой движение электронов. Количество электронов, т. е. количество электричества, проходящего через 1 квадратный сантиметр поперечного сечения проводника, называется силой тока.
Сила тока в электротехнике измеряется единицей, называемой ампером.
Через электрическую лампочку, горящую в комнате и имеющую среднюю яркость, протекает ток, измеряемый 1/3–1/2 ампера. В линиях передачи электрической энергии протекают токи, измеряемые сотнями и тысячами ампер, а в молнии ток доходит до 200 000 ампер!
7. Получение электричества через влияние
Теперь, когда мы знаем, что атомы каждого тела состоят из частиц, содержащих как положительное, так и отрицательное электричество, мы можем объяснить важное явление — получение электричества через влияние. Это поможет нам понять, как образуется молния.
Произведём следующий опыт. Поднесём к шарику электроскопа палочку, заряженную электричеством какого-нибудь рода, например — положительным, но не будем дотрагиваться палочкой до шарика, оставив между ними маленький просвет (рис. 7, слева). Листочки электроскопа разойдутся, хотя электричество с палочки на шарик не могло перейти: воздух не является проводником. Это произошло по следующей причине. Положительное электричество на палочке будет притягивать к себе отрицательное электричество, имеющееся на шарике, стержне и листочках электроскопа, и отталкивать от себя положительное электричество на этих же проводниках. Отрицательное электричество соберётся ближе к палочке — на поверхности шарика, а положительное — дальше, на листочках. А оба листочка, на которых оказалось электричество одного и того же рода (положительное), разойдутся.
Рис. 7. Получение электричества через влияние.
Но такое расположение обоих электричеств на электроскопе — непрочное. Стоит нам удалить палочку от шарика, и листочки снова спадут: оба рода электричества, притягиваясь друг к другу, опять равномерно распределятся во всех частях электроскопа, и он перестанет проявлять свои электрические свойства.
Потупим теперь так. Снова поднесём к шарику электроскопа палочку, заряженную положительным электричеством, оставив просвет. Листочки разойдутся. Затем, не унося палочки, дотронемся другой рукой до шарика. Угол между листочками немного уменьшится, но совсем листочки не спадут (рис. 7, посредине). Теперь унесём палочку и отнимем руку. Листочки останутся в прежнем положении — электроскоп будет заряжен (рис. 7, справа).
Почему это произошло? Откуда получилось электричество на электроскопе? Ведь мы заряженной палочкой к шарику не прикасались.
Когда мы дотронулись рукою до шарика электроскопа, то положительное электричество на нём, которое стремилось оттолкнуться от палочки, пошло по проводникам — нашей руке и нашему телу — и ушло в землю. А отрицательное электричество, притягиваемое палочкой, осталось на электроскопе и распределилось по всей его проводящей части, на шарике, стержне и листочках. На долю листочков досталось уже меньше электричества, и угол между ними уменьшился. Когда мы после этого унесли палочку, то ничего не изменилось, и электроскоп остался заряженным отрицательным электричеством.
Такой способ получения электричества называется получением электричества «через влияние». Здесь электричество не переходит от одного тела к другому, а получается от влияния тела, заряженного электричеством другого рода.
Мы увидим в следующей главе, что именно такое получение электричества через влияние и будет причиной молнии.
Рассказанных здесь сведений достаточно, чтобы понять, как образуется молния, какие действия она производит и как от неё защититься. Этому и посвящены следующие главы нашей книжки.
II. Образование молнии и грома
1. Происхождение грозовых туч
Туман, поднявшийся высоко над землёй, состоит из частичек воды и образует облака. Более крупные и тяжёлые облака называются тучами. Одни тучи являются простыми — они молнии и грома не вызывают. Другие же называются грозовыми, так как именно они создают грозу, образуют молнию и гром. От простых дождевых туч грозовые тучи отличаются тем, что они заряжены электричеством: одни — положительным, другие — отрицательным.
Как же образуются грозовые тучи?
Всякий знает, какой сильный ветер бывает во время грозы. Но ещё более сильные воздушные вихри образуются выше над землёй, где движению воздуха не мешают леса и горы. Этот ветер, главным образом, и образует положительное и отрицательное электричество в облаках. Чтобы понять это, рассмотрим, как распределено электричество в каждой водяной капле. Такая капля изображена в увеличенном виде на рис. 8. В центре её находится положительное электричество, а равное ему отрицательное электричество располагается на поверхности капли. Падающие капли дождя подхватываются ветром, попадают в воздушные потоки. Ветер, с силой ударяющий в каплю, разбивает её на части. При этом отколовшиеся наружные частицы капли оказываются заряженными отрицательным электричеством. Оставшаяся более крупная и тяжёлая часть капли заряжена положительным электричеством. Та часть тучи, в которой скапливаются тяжёлые частицы капель, заряжается положительным электричеством.
Рис. 8. Так распределено электричество в дождевой капле. Положительное электричество внутри капли изображено одним (большим) знаком «+».
Чем сильнее ветер, тем скорее туча заряжается электричеством. Ветер затрачивает определенную работу, которая уходит на то, чтобы разделить положительное и отрицательное электричества.
Дождь, выпадающий из тучи, уносит часть электричества тучи на землю и, таким образом, между тучей и землёй создаётся электрическое притяжение.