Добавить в цитаты Настройки чтения

Страница 19 из 88



Квантовая и тепловая дрожь кое в чем похожи друг на друга, но не во всем. Тепловая дрожь очень хорошо заметна. Дрожание молекул и электромагнитных полей раздражает ваши нервные окончания и позволяет чувствовать тепло. Оно может быть крайне разрушительным. Например, энергия тепловой дрожи электромагнитных полей может передаваться электронам в атомах. Если температура достаточно высока, электроны могут отрываться от атомов. Эта же энергия может вас сжечь или даже испарить. Напротив, квантовая дрожь, хотя и может быть невероятно энергичной, не способна причинить боль. Она не раздражает нервные окончания и не разрушает атомы. Почему? Она достигает энергии, необходимой для ионизации атома (выбивания из него электронов) или для срабатывания ваших нервных окончаний. Однако из основного состояния невозможно позаимствовать энергию. Квантовая дрожь — это то, что остается, когда система находится в состоянии абсолютного энергетического минимума. Так что невероятно сильные квантовые флуктуации не обладают деструктивным эффектом тепловых флуктуаций, поскольку их энергия «недоступна».

Черная магия

Для меня самое странное в квантовой механике — это интерференция. Вернемся к эксперименту с двумя щелями, который я описывал в начале этой главы. В нем три составляющих: источник света, плоский экран с двумя узкими щелями и люминесцентный экран, который вспыхивает, когда на него попадает свет.

Начнем экспериментировать, закрыв левую щель. Результатом будет округлая засветка на экране без всяких деталей. Если снизить яркость источника, то станет видно, что это свечение в действительности складывается из случайно расположенных вспышек, вызванных отдельными фотонами. Вспышки непредсказуемы, но их достаточно много, они складываются в округлое пятно.

Вели открыть левую щель и закрыть правую, рисунок на экране в целом практически не изменится, не считая небольшого сдвига влево.

Сюрприз ждет нас, когда будут открыты обе щели. Вместо простого наложения фотонов, прошедших через левую и правую щели, с получением более интенсивного округлого пятна без внутренних деталей результатом оказывается полосатый узор наподобие зебры.

Самая странная вещь в этом новом рисунке — наличие в нем темных полос, куда не попадают фотоны, несмотря на то что те же области заполнялись вспышками, когда открыта была только одна щель. Возьмем точку, помеченную буквой X на центральной темной полосе. Фотоны легко проходят через любую из щелей и попадают в точку X, когда в один момент открыта только одна из щелей. Может показаться, что при обеих открытых щелях число фотонов, попадающих в точку X, только возрастет. Но открытие двух щелей дает парадоксальный эффект: поток фотонов, приходящих в точку X, прекращается. Почему открытие обеих щелей делает менее вероятным для фотона попадание в точку X?

Представьте себе кучку пьяных заключенных, шатающихся по подземелью с двумя дверями, ведущими наружу. Тюремщик внимательно следит за тем, чтобы никогда не оставлять открытой одну дверь, поскольку некоторые узники столь пьяны, что могут случайно найти выход. Но у него нет сомнений относительно отпирания сразу двух дверей. Какая-то загадочная магия мешает пьяницам выйти наружу, когда открыты обе двери. Конечно, с настоящими заключенными такого не случается, но нечто в этом роде предсказывает иногда квантовая механика не только для фотонов, но и для всех частиц.

Этот эффект кажется странным, если считать, что свет состоит из частиц, но он совершенно естествен для волн. Две волны, расходящиеся из двух щелей, усиливают друг друга в одних точках и гасят — в других. В волновой теории света темные полосы возникают в результате взаимного гашения, которое также называют деструктивной интерференцией. Единственная проблема состоит в том, что на самом деле свет иногда ведет себя как частицы.

Квант в квантовой механике

Электромагнитная волна — это пример колебания. В каждой точке пространства электрическое и магнитное поля вибрируют с частотой, которая зависит от цвета излучения. В природе существует множество других колебаний. Вот некоторые широко известные примеры.

♦ Маятник часов. Маятник совершает полное колебание вперед и назад примерно за секунду. Частота такого маятника — один герц, или один цикл в секунду.

♦ Груз, подвешенный к потолку на пружине. Если пружина достаточно жесткая, частота колебаний составит несколько герц.



♦ Вибрация камертона или скрипичной струны. И то и другое может давать несколько сотен герц.

♦ Электрический ток в цепи. Он может осциллировать с гораздо большей частотой.

Системы, способные осциллировать, называются — что, в общем, неудивительно — осцилляторами. Все они обладают энергией, по крайней мере когда осциллируют, и в классической физике эта энергия может иметь любую величину. Я имею в виду, что осциллятор можно плавно накачивать энергией до любого желаемого значения. На графике показано, как растет энергия осциллятора по мере его накачки.

Но оказывается, что в квантовой механике энергия может поступать только маленькими неделимыми порциями. Если попытаться плавно увеличить энергию осциллятора, результатом будет лестница, а не гладкий пандус. Прибавление может осуществляться лишь порциями, кратными единице, называемой квантом энергии.

Какова величина квантовой единицы? Это зависит от частоты осциллятора. Правило здесь в точности то же самое, что было открыто Планком и Эйнштейном для световых квантов: квант энергии Е — это частота осциллятора f, помноженная на постоянную Планка h:

E = hf.

У обычных осцилляторов, таких как маятник, частота не очень велика и шаг по высоте (квант энергии) чрезвычайно мал. В этом случае ступенчатый график состоит из таких крошечных шагов, что выглядит как гладкий подъем. Именно поэтому мы не замечаем квантования энергии в повседневной жизни. Однако электромагнитные волны могут иметь достаточно высокие частоты, при которых ступеньки лестницы будут значительно выше. В действительности, как вы могли уже догадаться, увеличение энергии электромагнитной волны на одну ступень — это то же, что добавление одного фотона к пучку света.

Для классически настроенного мозга кажется нелогичным тот факт, что энергия может добавляться только неделимыми квантами, но именно это вытекает из квантовой механики.

Квантовая теория поля

Лапласовская картина мира восемнадцатого века была довольно унылой: частицы, ничего, кроме частиц, движущихся по орбитам, которые предопределены деспотичными уравнениями Ньютона. Я бы рад сообщить, что современная физика предлагает более теплую, размытую картину реальности, но боюсь, что это не так. Это по-прежнему частицы, только на современный манер. Железный закон детерминизма заменен более гибким законом квантовой случайности.

Новый математический аппарат, заменивший ньютоновские законы движения, называется квантовой теорией поля, и согласно его диктату, весь природный мир состоит из элементарных частиц, движущихся из одной точки в другую, сталкивающихся, распадающихся и вновь сливающихся. Это колоссальная сеть мировых линий, соединяющих события (точки пространства-времени). Математику этой гигантской паутины из линий и точек нелегко объяснить на обыденном языке, но главные моменты совершенно ясны.

В классической физике частицы движутся от одной точки пространства-времени к другой по строго определенным траекториям. Квантовая механика вносит в их движение неопределенность. Тем не менее мы можем считать, что они проходят между точками пространства-времени, хотя и по неопределенным траекториям. Эти расплывчатые траектории называются пропагаторами. Обычно пропагаторы изображаются линиями между двумя пространственно-временными событиями, но лишь потому, что не существует способа нарисовать неопределенное движение подлинных квантовых частиц.