Страница 18 из 88
Один взгляд на этот график говорит нам, что большинство частиц находится вблизи точки х = 1. Для некоторых задач этого может хватить. Но достаточно чуть присмотреться, чтобы высказаться значительно точнее. Около 90 % частиц находятся между отметками х = 0 и х = 2. Если делать ставки на то, где окажется конкретная частица, то наибольшие шансы будут при х— 1, но неопределенность — математическая мера того, насколько «широка» кривая на графике, — составит около 2 единиц[48]. Греческая буква дельта (Δ) служит стандартным математическим обозначением для неопределенности. В данном случае Ах означает неопределенность координаты х для рассматриваемых частиц.
Проделаем еще один мысленный эксперимент. Вместо измерения положений частиц будем измерять их скорости, считая их положительными для частиц, движущихся вправо, и отрицательными для тех, что движутся влево. На этот раз горизонтальная ось представляет скорость V.
Из графика видно, что большинство частиц движется влево, и можно также составить представление о разбросе скоростей Δν.
Принцип неопределенности говорит примерно следующее: любая попытка уменьшить неопределенность положения неизбежно будет приводить к увеличению неопределенности скорости. Например, можно целенаправленно выбрать только частицы в узком диапазоне значений х: скажем, между х = 0,9 и х = 1,1, отбросив все остальные. Для этого тщательно отобранного подмножества частиц неопределенность будет составлять всего 0,2, в десять раз меньше исходного Δх. Можно надеяться таким способом обойти принцип неопределенности, но это не срабатывает.
Оказывается, если взять то же подмножество частиц и измерить их скорости, разброс их значений окажется значительно больше, чем в исходной выборке. Вы можете удивиться, почему так происходит, но, боюсь, это просто один из непостижимых квантовых фактов, которым нельзя дать классического объяснения. Это одна из тех вещей, о которых Фейнман говорил: «Теоретическая физика отказалась от этого».
При всей непостижимости, это экспериментальный факт: всякий раз, когда мы сокращаем Δх, неизбежным следствием становится рост Δv. И аналогично, все, что приводит к сокращению Δv, вызывает увеличение Δх. Чем сильнее мы стараемся зафиксировать положение частицы, тем неопределеннее мы делаем ее скорость, и наоборот.
Это было грубое описание идеи, но Гейзенберг смог выразить свой принцип неопределенности в более точной, количественной форме. Он утверждает, что произведение Δν, Δх и массы частицы т всегда больше (>) постоянной Планка h.
mΔvΔx > h.
Посмотрим, как это работает. Предположим, что мы очень тщательно подготовили частицы, так что величина Δх чрезвычайно мала. Это вынуждает неопределенность скорости Δν становиться достаточно большой, чтобы произведение было больше h. Чем меньше мы делаем Δх, тем больше становится Δν.
Как получается, что мы не замечаем проявлений принципа неопределенности в повседневной жизни? Разве бывало такое, чтобы при вождении автомобиля наше положение становилось «размытым», при внимательном взгляде на спидометр? И разве спидометр сходит с ума, когда мы определяем по карте, где именно мы находимся? Конечно нет. Но почему? Ведь принцип неопределенности никому не делает поблажек, он применим ко всему, в том числе к вам и вашему автомобилю, точно так же как к электронам. Ответ связан с массой, которая входит в формулу, и с малостью постоянной Планка. В случае электрона очень малая масса электрона сокращается с малостью h, и потому совокупная неопределенность Δν и Δх должна быть весьма значительной. Но масса автомобиля очень велика в сравнении с постоянной Планка. Поэтому обе величины Δν и Δх могут оставаться неизмеримо малыми, не нарушая принципа неопределенности. Теперь понятно, почему природа не приспособила наш мозг к квантовой неопределенности. В этом не было необходимости: в обыденной жизни мы никогда не сталкиваемся с объектами достаточно легкими, чтобы приходилось учитывать принцип неопределенности.
Таков принцип неопределенности: непреодолимая уловка-22, гарантирующая, что никто не сможет узнать достаточно, чтобы предсказывать будущее. Мы вернемся к принципу неопределенности в главе 15.
Нулевые колебания и квантовая дрожь
Маленький сосуд, скажем сантиметрового размера, заполнили атомами — пусть это будут атомы гелия, они химически инертны, — а затем нагрели до высокой температуры. Благодаря нагреву частицы стали быстро двигаться, непрерывно сталкиваясь друг с другом и со стенками сосуда. Эта постоянная бомбардировка создает давление на стенки.
По обыденным меркам, атомы движутся очень быстро: их средняя скорость составляет около 1500 м/с. Теперь газ охлаждается. По мере отвода тепла энергия теряется и атомы замедляются. В конце концов, если продолжить отводить тепло, газ охладится до наинизшей возможной температуры — абсолютного нуля, или примерно минус 273,15 градуса по шкале Цельсия. Атомы, потеряв всю свою энергию, останавливаются, и давление на стенки сосуда исчезает.
По крайней мере, предполагается, что это должно произойти. Но в этом рассуждении забыли принять во внимание принцип неопределенности.
Подумайте: что в данном случае нам известно о положении любого атома? На самом деле очень много: атом заключен внутри сосуда, а сосуд имеет размер один сантиметр. Очевидно, что неопределенность его положения Δχ меньше сантиметра. Допустим на мгновение, что все атомы действительно пришли в состояние покоя, когда мы отвели все тепло. Каждый атом будет иметь нулевую скорость без неопределенности. Иначе говоря, Δν станет нулем. Но это невозможно. Будь это так, произведение mΔνΔχ тоже обратилось бы в нуль, а нуль определенно меньше постоянной Планка. Можно подойти к этому иначе: если бы скорость атома стала нулевой, его положение оказалось бы бесконечно неопределенным. Но это не так. Все атомы находятся в сосуде. Так что даже при абсолютном нуле атомы не могут полностью прекратить свое движение; они продолжают ударяться в стенки сосуда и оказывать на них давление. Это одна из неожиданных причуд квантовой механики.
Когда из системы откачано так много энергии (при температуре абсолютного нуля), физики говорят, что она находится в основном состоянии. Остаточные флуктуации в основном состоянии обычно называют нулевыми колебаниями, однако физик Брайан Грин предложил более яркое разговорное выражение — «квантовая дрожь».
Дрожи подвержены не только положения частиц. Согласно квантовой механике, все, что может дрожать, дрожит. Другой пример — электрическое и магнитное поля в пустом пространстве. Вибрации электрических и магнитных полей окружают нас со всех сторон, заполняя пространство в виде световых волн. Даже в темной комнате электромагнитные поля вибрируют в форме инфракрасных волн, микроволн и радиоволн. Но что, если затемнить комнату, применив все достижения науки и устранив все фотоны? Электрическое и магнитное поля продолжат свое квантовое дрожание. «Пустое» пространство — это бешено вибрирующая, осциллирующая, дрожащая среда, которая никогда не успокаивается.
Еще до появления квантовой механики было известно о «тепловой дрожи», которая все заставляет флуктуировать. Например, нагрев газа вызывает усиление случайных движений молекул. Когда же нагрето пустое пространство, оно заполнено дрожащими электрическими и магнитными полями. Это не имеет никакого отношения к квантовой механике и было известно еще в девятнадцатом веке.
48
Конечно, колоколообразная кривая продолжается и за границами осей, изображенных на графике, так что есть возможность обнаружить частицы и вдали от этой области. Математическая неопределенность дает нам интервал наиболее вероятных значений.