Добавить в цитаты Настройки чтения

Страница 107 из 110



[100] S. Hofma

[101] F. Markopoulou, «Towards Gravity from the Quantum,» <К гравитации от квантов>, [http://arxiv.org/abs/hep-th/0604120].

[102] S.O. Bilson-Thompson, «A Topological Model of Composite Preons,» <Топологическая модель составных преонов>, [http://arxiv.org/abs/hep-ph/0503213].

[103] S.O. Bilson-Thompson, F. Markopoulou, and L. Smolin, «Quantum Gravity and the Standard Model,» <Квантовая гравитация и стандартная модель>, [http://arxiv.org/abs/hep-th/0603022].

[104] Аудиозапись обсуждения доступна на http://www.perimeterinstitute.ca/activities/scientific/cws/evolving_laws/.

16. Как вы боретесь с социологией?

[105] http://www.cosmicvariance.com/2005/11/18/a-particle-physicists-perspective.

[106] Анонимное сообщение на сайте http://groups.google.com/group/sci.physics.strings/ от String Theorist, 9 октября 2004.

[107] Guardian Unlimited, 20 января 2005.

[108] На статьи, где я задаю вопросы о том или ином результате теории струн, я получил три отклика, в которых корреспондент ссылался на «сильное» сообщество теории. Как в этом: «Хотя конечность [ряда] возмущений (или предположение Малдасены, или S-дуальность) не удалось доказать, никто в сильном сообществе теории не верит, что это может быть ложным». Один раз может быть совпадение; после трёх раз это классическая фрейдистская обмолвка. Как много от социологии струнной теории является лишь желанием всеми-весьма-узнаваемого человека захотеть быть частью сильнейшей из существующих групп?

[109] S. Kachru, R. Kallosh, A. Linde, and S. Trivedi, «De Sitter Vacua in String Theory,» <Вакуумы де Ситтера в теории струн>, [http://arxiv.org/abs/hep-th/0301240].

[110] http://groups.google.com/group/sci.physics.strings/, 6 апреля 2006.

[111] L. Smolin, «Did the Universe Evolve?» <Развивалась ли вселенная?> Class. Quant. Grav., 9(1): 173-91 (1992).



[112] http://www.ipm.ac.ir/IPM/news/co

[113] Michael Duff, Physics World, Dec. 2005.

[114] http://www.damtp.cam.ac.uk/user/gr/public/qg_ss.html.

[115] Однако, я рад сообщить, что в Сети нетрудно найти введения в теорию струн, которые не делают искажённые или преувеличенные утверждения. Вот некоторые примеры: http://tena4.vub.ac.be/beyondstringtheory/index.html; http://www.sukidog.com/jpierre/strings/; http://en.wikipedia.org/wiki/M-theory.

[116] S. Mandelstam, «The N-loop String Amplitude — Explicit Formulas, Finiteness and Absence of Ambiguities,» < N-петлевая струнная амплитуда — явные формулы, конечность и отсутствие неоднозначностей>, Phys. Lett. B, 277(1–2): 82–88 (1992).

[117] Вот несколько примеров: J. Barbon, [http://arxiv.org/abs/hep-th/0404188], Eur. Phus. J., C33: S67-S74 (2004); S. Foerste, [http://arxiv.org/abs/hep-th/0110055], Fortsch. Phys., 50: 221–403 (2002); S.B. Giddings, [http://arxiv.org/abs/hep-ph/0501080]; и J. Antoniadis and G. Ovarlez, [http://arxiv.org/abs/hep-th/9906108]. Редким примером обзора с тщательным и корректным (на данный момент) обсуждением проблемы конечности является L. Alvarez-Gaume and M.A. Vazquez-Mozo, [http://arxiv.org/abs/hep-th/9212006].

[118] Это статья Андрея Маршакова (УФН, 172(9): 977-1020 (2002) или Phys. Usp., 45: 915-54 (2002), [http://arxiv.org/abs/hep-th/0212114]). Я извиняюсь за технический язык, но, возможно, читатель сможет увидеть суть:

«К сожалению, десятимерная суперструна, претендующая на роль наиболее успешной из существующих струнных моделей, строго определена, вообще говоря, лишь на древесном и однопетлевом уровнях. Начиная с двухпетлевых струнных поправок в амплитуды рассеяния все выражения в пертурбативной теории суперструн по сути дела не определены. Причиной этого являются хорошо известные проблемы с супергеометрией или интегрированием по „суперпартнерам“ модулей комплексных структур. В отличие от бозонного случая, где мера интегрирования фиксируется теоремой Белавина-Книжника, определение меры интегрирования по супермодулям (или, точнее, нечётным модулям суперкомплексных структур) всё ещё является нерешённой задачей… Пространства модулей комплексных структур римановых поверхностей некомпактны, и интегрирование по таким пространствам требует специальной заботы и дополнительных определений. В бозонном случае, где интегралы по пространствам модулей расходятся, результат интегрирования… определён, вообще говоря, с точностью до „граничных членов“ (вкладов вырожденных римановых поверхностей или поверхностей меньшего рода (с меньшим числом „ручек“)). В случае суперструны возникают гораздо более существенные проблемы из-за того, что само понятие „границы пространства модулей“ не определено. На самом деле интеграл по грассмановым нечётным переменным „не знает“, что такое „граничный член“. Это является фундаментальной причиной того, что мера интегрирования в фермионной струне плохо определена и зависит от „выбора калибровки“ или отдельного выбора „нулевых мод“ полей… в действии… Для двухпетлевых вкладов эти проблемы могут быть решены „эмпирически“ (…), но, вообще говоря, суперструнная теория возмущений не является в математическом смысле определённой процедурой. Более того, данные проблемы не являются „чистыми“ проблемами формализма, те же самые трудности возникают в менее геометрическом подходе Грина и Шварца…»

[119] Вот электронное письмо от Мандельштама, датированное 8 июня 2006:

«По поводу моей статьи о конечности n-петлевой струнной амплитуды позвольте мне, во-первых, заметить, что расходимости могут появляться только тогда, когда пространство модулей вырождается. Я исследовал точки вырождения, связанные с „дилатонной“ расходимостью, с которой имеют дело струнные теоретики. Я показал, что аргументы, применявшиеся ранее к однопетлевой амплитуде, могут быть распространены на n-петлевую амплитуду, а также, что соответствующие неоднозначности в определении контура интегрирования по однородным супермодулям могут быть разрешены с использованием однозначного предписания, согласующегося с унитарностью. Я согласен, что это не обеспечивает математически строгое доказательство конечности, но я уверен, что это работает в физических проблемах, которые могли бы привести к бесконечностям. Я не исследовал другого источника бесконечностей, известного с ранних дней дуальных моделей, а именно использования мнимого времени. Множитель exp(iEt), где Е есть разница между текущей и начальной энергиями, явно может расходиться, если интегрирование проводится по мнимому времени. Есть уверенность из физических соображений, что такие бесконечности могут быть удалены аналитическим продолжением на реальное время. Это было явно показано для беспетлевой [древесной] и однопетлевой амплитуды, и было показано, что аналитическое продолжение, приводящее к конечности, может быть определено для двухпетлевой амплитуды.»

[120] G.T. Horowitz and J. Polchinski, «Gauge/gravity duality,» <Калибровочно-гравитационная дуальность> [http://arxiv.org/abs/gr-qc/0602037]. К публикации в Towards Quantum Gravity, <По направлению к квантовой гравитации>, ed. DanieleOriti, Cambridge University Press.