Добавить в цитаты Настройки чтения

Страница 9 из 10

ВОЗМОЖНА ЛИ ЖИЗНЬ МИКРООРГАНИЗМОВ НА ПЛАНЕТАХ

Зная физические и химические свойства планет солнечной системы и познакомившись с приспособляемостью микроорганизмов к условиям среды, мы можем с уверенностью говорить о существовании на Марсе и Венере микроорганизмов.

Можно ли сказать то же о планетах-гигантах — Юпитере, Сатурне, Уране и Нептуне?

Как известно, температура на внешних оболочках их атмосфер очень низка: от -140 до -200°Ц. Они содержат очень много газообразного метана, а Юпитер и Сатурн — также аммиака. В таких условиях высшие земные организмы существовать не могут.

Однако известны бактерии, которые могут жить в метане, хотя при обыкновенных условиях и нуждаются в кислороде. Некоторые из них могут вместо кислорода использовать нитраты, то-есть азотные соединения.

Метан образуется при сбраживании многих органических веществ. Те же самые бактерии, которые вызывают метановое брожение органических веществ, способны в присутствии молекулярного водорода восстанавливать углекислый газ до метана.

Можно с уверенностью сказать, что в атмосферах планет-гигантов находится водород. Поэтому присутствие метана в атмосферах этих планет можно объяснить деятельностью бактерий.

Можно предположить, что метан и аммиак образуются в атмосферных глубинах планет-гигантов также и в результате разложения отживших микроорганизмов и поднимаются из уплотненных внутренних слоев в верхние слои атмосфер.

Это предположение подтверждается и следующими обстоятельствами.

В земных горных породах, а также в вулканических газах обычно присутствует метан. Для разных вулканов содержание метана в выделяющихся из них газах составляет от 3 до 12 процентов. В газах, выделяющихся из графита, — до 40 процентов метана, из базальта — свыше 10 процентов, из гранита — 3 процента. Раньше предполагали, что метан, выделяющийся из горных пород при нагревании, образуется под воздействием воды на карбиды металлов. Однако при нагревании с водой карбидов кальция, натрия, калия выделяется не метан, а ацетилен. Поэтому теперь считают, что источником метана в данных случаях является органическое вещество.

Где же могут существовать на планетах-гигантах микроорганизмы? Можно думать, что с погружением в атмосферы этих планет температура повышается и на некоторой глубине становится несколько выше нуля, а потому там могут жить бактерии.

Тот факт, что метан и аммиак могут образовываться и без участия организмов (метан, например, имеется в небольших количествах даже на кометах), не является возражением против наших предположений.

Метан (CH 4) состоит из углерода (С) и водорода (Н), а аммиак (NH 3) — из азота (N) и водорода (Н). Но все эти элементы — углерод, водород и азот — имеют изотопы, которые занимают одно и то же место в таблице Менделеева, но имеют разный атомный вес. Так, у углерода два изотопа с атомными весами 12 и 13, у водорода три — с атомными весами 1, 2 и 3 и у азота — два с атомными весами 14 и 15.

Есть основание считать, что изотопный состав метана и аммиака органического происхождения отличается от изотопного состава этих газов неорганического происхождения, а потому должны различаться и их спектры. Следовательно, изучая спектры этих газов органического и неорганического происхождения и сравнивая их со спектрами планет-гигантов, можно будет решить, есть ли на этих планетах аммиак и метан органического происхождения. Интересно отметить, что при сравнении спектра метана из светильного газа, имеющего органическое происхождение, со спектрами планет-гигантов получилось полное сходство, тогда как между спектром этих планет и аммиака лабораторного, синтетического, найдено различие.

Итак, есть основание предполагать, что микроорганизмы существуют и на планетах-гигантах.

ПЕРСПЕКТИВЫ РАЗВИТИЯ АСТРОБИОЛОГИИ

Для дальнейшего развития работ по астробиологии надо углубить и расширить астроботанические исследования. Необходимо продолжить изучение воз-можности жизни организмов на других планетах. И, наконец, всемерно укреплять связи астроботаники с практическими задачами, решаемыми наукой.





Ученые выдвинули идею создания астробиологического института. Мощные астрономические инструменты позволят нам исследовать свет планет, проникая возможно дальше в инфракрасные лучи.

Новейшие приборы дадут возможность производить тщательные исследования спектра аммиака (органического и минерального происхождения) при очень низких температурах и разных давлениях.

Хорошо организованные экспедиции позволят изучать оптические свойства растений в самых разнообразных климатах земного шара от высоких гор и Арктики до влажных и сухих тропических стран.

Большое содействие смогут оказать нам ученые Китайской Народной Республики. На высокогорьях Тибета климат гораздо ближе к марсианскому, чем даже у нас на Памире, а на юго-востоке Китая природа уже тропическая.

На встрече советских астрономов с делегацией китайских ученых в Пулковской обсерватории 27 марта 1953 года ботаники Китая заинтересовались проблемами астробиологии и изъявили желание начать наблюдения цвета тибетских растений.

Детальное изучение «оптической приспособляемости» к суровым климатическим условиям помогут нашей агротехнике в выведении морозоустойчивых и засухоустойчивых видов растений, в продвижении культур на север и в места с засушливым климатом. Тесная связь астробиологии с астрономией, физикой, химией, биологией объединит усилия исследователей. Все это даст науке единый комплекс знаний о жизни на Земле и других планетах.

А в будущем, когда советская наука и техника дадут сверхмощные приборы для наблюдения, перед астробиологией откроются поистине неограниченные возможности. Человечеству будут доступны тайны жизни на других планетах. Изучение жизни на Земле и на других планетах сольется воедино.

ВЕЗДЕСУЩАЯ ЖИЗНЬ

(Пояснительный текст к «Таблице жизни»

Бесконечно разнообразны жизненные формы, неисчерпаема их приспособляемость к условиям внешней среды.

Академик В. И. Вернадский в книге «Биосфера» впервые поставил вопрос о границах биосферы — об области существования жизни. Где же проходят эти границы?

При определении границ жизни надо различать две формы жизни — активную, когда живые организмы находятся в состоянии энергичного обмена веществ с окружающей средой, могут размножаться, и пассивную, когда живые организмы находятся в состоянии скрытой жизни — в виде семян, спор, в состоянии анабиоза. Безусловно, зона пассивной жизни значительно шире зоны активной жизни.

Человек в лабораторных условиях может создавать искусственно отрицательные температуры почти до абсолютного нуля -273°. В температуре жидкого гелия -271°,88 могут выживать споры бактерий. При температуре в -240° удавалось выдерживать в подсушенном состоянии круглых червей — нематод и близких к ним тихоходок. При этом они не теряли способности оживать после перенесения их в тепло и смачивания.

В последнее время в биологии получены новые данные о состоянии, в котором может находиться живое вещество при низких отрицательных температурах. Уже давно было известно, что при замерзании живая клетка гибнет от образования кристаллов льда, разрушающих клеточную структуру. Следовательно, чем меньше в клетке воды, тем больше должна быть ее стойкость к отрицательным температурам. Подсушивание организмов перед погружением в морозную атмосферу способствует их большей морозоустойчивости. Еще более действенно быстрое погружение в морозную среду. Мелкие организмы и отдельные клетки при этом не образуют кристаллов льда, а переходят в особое стеклообразное состояние.

Однако при отрицательных температурах зона активной жизни для животных с переменной температурой и растений очень невелика. Для морской фауны и флоры она лежит между нулем и -1°,8, для наземной примерно такая же.