Добавить в цитаты Настройки чтения

Страница 21 из 136

7. Явление, аналогичное описанному выше, возникает также при управлении самолетом по курсу. При дозвуковой скорости полета после поворота руля направления, например, вправо самолет, осуществляя поворот, кренится в ту же сторону независимо от формы крыла. При полете с Мкр картина меняется: после отклонения руля вправо левое крыло выдвигается вперед и его эффективный угол стреловидности относительно потока уменьшается, в связи с чем снижается также Мкр . В результате волновой кризис раньше возникает на левом крыле и его подъемная сила уменьшается, вследствие чего самолет получает крен на левую сторону вместо правой. Этот эффект усугубляется еще и тем, что сила, возникшая на вертикальном оперении, после поворота руля направления воздействует на определенном плече относительно продольной оси самолета и, следовательно, создает момент, вызывающий дополнительный крен в направлении, противоположном требуемому.

Описанное явление особенно характерно для современных самолетов с вертикальным оперением большой площади и крыльями малого удлинения, которые имеют малый продольный момент инерции. Очевидно, что противоположная реакция самолета на отклонение руля направления может быть связана также со сжимаемостью воздуха и возникновением кризисных явлений при несимметричном обтекании правой и левой консолей крыла, а также со специфическими формами сверхзвуковых самолетов и их меньшим моментом инерции относительно продольной оси. Эффект реверса руля направления может проявляться в диапазоне не только околозвуковых, но также и сверхзвуковых скоростей, особенно при М › l,5-2,0.

1* Обратное действие (реверс) элеронов проявляется в отклонении самолета в сторону, противоположную заданной пилотом. Реверс связан с упругостью конструкции и возникает при определенной (для данного типа самолета) скорости.

Развитие аэродинамических систем управления

Большое число и разнообразие явлений, ведущих к ухудшению устойчивости и управляемости в диапазоне сверхкритических скоростей, а также отсутствие эффективных средств противодействия им в первых около- и сверхзвуковых самолетах сделали полеты очень сложными и потребовали от пилотов исключительно осторожного управления. Практическое использование таких самолетов было невозможным, так как выполнение полета требовало концентрации всего внимания пилота.

Утрата эффективности управления в диапазоне сверхкритических скоростей-крайне опасное явление, требующее энергичного противодействия со стороны конструктора самолета. Если самолет имеет двигательную установку с достаточно большой тягой, то при разгоне он может относительно быстро преодолеть интервал околозвуковых скоростей, и поэтому некоторые из вышеописанных эффектов проявляются в течение такого короткого времени, что это не влияет на поведение самолета. Однако требование длительного полета современных самолетов на малой высоте с околозвуковыми скоростями вынуждает конструкторов разрабатывать различные аэродинамические и конструктивные способы обеспечения надлежащей управляемости во всем диапазоне эксплуатационных скоростей. Особенно стремятся к тому, чтобы снижение эффективности управления не совпадало по времени с нарушениями устойчивости, связанными с волновым кризисом на крыле в диапазоне околозвуковых скоростей.

В построенных до настоящего времени сверхзвуковых самолетах проблемы устойчивости разрешены различными способами, однако преимущественно посредством соответствующих комбинаций управляющих поверхностей: элеронов; элевонов; управляемого дифференциального стабилизатора; элеронов и рулей высоты, размещенных в хвостовых частях крыла; зависающих элеронов; интерцепторов; рулей высоты и направления либо цельнопово- ротного горизонтального и вертикального оперения, которое в самолетах вертикального взлета и посадки (как исключение, и в высотном самолете Х-15А) дополнено системой струйного (реактивного) управления.





Как следует из данных, содержащихся в табл. 1, в 37 самолетах для поперечного управления использованы элероны; в 7-элероны и интерцепторы; в 3-элероны и дифференциальный управляемый стабилизатор; в 8-интерцепторы и дифференциальный управляемый стабилизатор; в 5-только дифференциальный управляемый стабилизатор; в 19-элевоны; в 6-элероны и рули высоты в хвостовой части крыла; в 1-зависающие элероны и дифференциальный управляемый стабилизатор и в 2-только интерцепторы. Для управления по тангажу и курсу в 6 самолетах использовано классическое горизонтальное оперение, состоящее из неподвижного стабилизатора и руля высоты; в 56-полностью поворотное горизонтальное оперение, в том числе в 17-дифференциальное (всего создано 62 самолета классической схемы); в 75-классическое одно- килевое оперение; в 6-двухкилевое оперение; в 5-полностью поворотное одно килевое и в 2-поворотное двухкилевое.

Приведенные данные показывают, что проблема управления самолетами разрешалась разными способами в зависимости от принятой общей концепции самолета, развития аэродинамики и имеющегося опыта. В то же время возможности использования различных методов в целях получения требуемой устойчивости весьма ограничены. Помимо соответствующего взаимного расположения несущих поверхностей различной формы и площади, улучшения продольной устойчивости можно добиться только путем регулирования положения центра тяжести самолета посредством перекачки топлива из передней части фюзеляжа к хвостовой (либо наоборот), а улучшения устойчивости по курсу- посредством применения подфюзеляжных килей и аэродинамических направляющих.

Топливная система, позволяющая изменять балансировку самолета в полете, использована в 4 самолетах, а подфюзе- ляжные кили-в 26 (в том числе: в 15-одиночные, в 10-сдвоенные и в 1-строенные).

Проблема малой маневренности первых сверхзвуковых самолетов как следствия недостаточной эффективности продольного управления с помощью руля высоты была разрешена путем использования цельнопо- воротного горизонтального оперения (управляемого стабилизатора). Такое оперение выполняется в виде моноблочной конструкции, поворачиваемой относительно поперечной оси и выполняющей функции как руля, так и стабилизатора. Оно не теряет эффективности при сверхзвуковом обтекании, поскольку не подвержено аэродинамической блокировке. Конструкция существенно упрощается в связи с возможностью избежать разделения горизонтального оперения на неподвижную и поворотную части, исключить шарнирные соединения и элементы управления рулем, весовую балансировку руля и т.п. Цельноповоротное оперение позволяет применять весьма тонкий профиль, что также положительно влияет на аэродинамические характеристики.

Достоинства цельноповоротного горизонтального оперения имеют двоякий характер. Во-первых, оперение этого типа значительно более эффективно в диапазоне около- и сверхзвуковых скоростей, что позволяет расширить возможности использования несущих свойств крыла для увеличения грузоподъемности. Во-вторых, более высокая эффективность цельноповоротного оперения позволяет создавать в полетах со сверхкритическими скоростями большие перегрузки, что существенно увеличивает маневренность самолетов с таким оперением в сравнении с самолетами, имеющими обычный руль высоты. Часто поворотный стабилизатор выполняется в виде двух плоскостей (левой и правой), что дает возможность как согласованного, так и дифференциального их отклонения. Эффективность такого оперения может быть дополнительно повышена применением закрылков со сдувом пограничного слоя (TSR.2) или созданием уступа передней кромки (F-15).

Упомянутое выше явление скоса потока вблизи горизонтального оперения, расположенного за крылом, может при их неблагоприятном взаимном расположении привести к отрицательным последствиям как при дозвуковых, так и при сверхзвуковых скоростях. В последнем случае наибольшее изменение скоса потока происходит на фронте косых скачков у задней кромки крыла. При полете на больших высотах ввиду значительных углов атаки этот фронт в районе оперения находится высоко над продольной осью самолета. В связи с этим при среднем или верхнем расположении горизонтального оперения (как это сделано на многих околозвуковых самолетах, с тем чтобы вынести оперение из области возмущений, индуцированных крылом) на сверхзвуковом режиме полета оперение может оказаться в зоне наибольшего скоса потока. Это, очевидно, может стать причиной возникновения неустойчивости, поэтому на большинстве сверхзвуковых самолетов классической схемы горизонтальное оперение размещено в нижней части фюзеляжа. В таком случае горизонтальное оперение находится вне области возмущений, а скос потока за крылом при сверхзвуковых скоростях бывает наименьшим.