Добавить в цитаты Настройки чтения

Страница 92 из 110

В аналитической механике в послевоенный период усиленно развивалась теория неголономных систем — как общие вопросы, так и решение частных задач. По-прежнему много внимания уделялось гироскопии. В теории динамических систем перешли к исследованию вопросов такой общности, что это направление можно отнести скорее к математике, чем к механике. Здесь происходит тот закономерный переход к более высокой степени общности, который со временем приведет к конкретизации получаемых результатов — при их применении к решению более сложных практических проблем.

Теория колебаний (преимущественно нелинейных) стала обширной дисциплиной, новые успехи которой были достигнуты на пути дальнейшего развития и взаимного влияния асимптотических, топологических и функциональных методов. Проведенный в Киеве в 1961 г. Международный симпозиум по нелинейным колебаниям показал, что советская наука сохраняет здесь свое ведущее положение. Направление Н.М. Крылова и Н.Н. Боголюбова стало большой научной школой, значительные коллективы работают в Горьком и в Москве (школы Мандельштама, Папалекси, Андронова), заметный вклад вносят в нелинейную механику многочисленные исследователи других научных центров. Теория устойчивости по-прежнему занимает одно из первых мест по числу исследований и исследователей, занимающихся ее проблемами. В ней постепенно происходит переход от разработки общих методов к анализу сравнительно частных, но практически весьма важных задач, выдвигаемых смежными областями — теорией колебания и теорией регулирования.

Возможно, что со временем будет принята такая классификация наук, согласно которой теория регулирования не будет включена в механику. Однако эта теория очень близка к механике по своим методам, многое у нее заимствует, и поэтому пока нет оснований отделять ее от механики. Начиная с 40-х годов теория регулирования развивается в нарастающем темпе, что естественно в эпоху автоматизации производственных процессов и внедрения различных кибернетических устройств, следящих систем, систем с дистанционным управлением и т. д.

В теории деформируемых твердых тел, несмотря на широкое развитие всех прежних направлений, центр тяжести стал смещаться в сторону новых схем: упругопластическое, вязкопластическое состояние, явления упрочнения (наклеп), ползучесть, нелинейные упругопластические колебания, механика сыпучей среды и грунтов. В настоящее время эти направления в своей совокупности превосходят по числу посвященных им работ и численности занимающихся ими исследователей классические разделы теории упругости. Во всех этих направлениях шла работа и над принципиальными основами, и над решением частных задач.

В механике жидкостей и газов наблюдается сходный процесс. Необходимость учета сжимаемости среды при движениях с большими дозвуковыми, затем околозвуковыми и сверхзвуковыми скоростями, когда термодинамика процесса играет первостепенную роль, заставляет все больше усилий уделять газовой динамике — дисциплине, в начале века составлявшей небольшую главу механики, а теперь соперничающей по объему материала и размаху исследований с классической аэродинамикой. Изучаются движения в газообразной среде и с так называемыми гиперзвуковыми скоростями — скоростями космических кораблей и метеоров, когда надо принимать во внимание и диссоциацию молекул газа. В гидромеханике схема идеальной жидкости в двумерных стационарных задачах при современных возможностях математического аппарата представляется почти исчерпанной. Больше внимания привлекают нестационарные задачи плоского движения идеальной жидкости и трехмерные задачи, особенно механика вязкой (несжимаемой) жидкости. Статистические методы остаются основными в теории турбулентности, где еще предстоит решить ряд кардинальных проблем. Очень большое место занимают теперь такие разделы, как движение жидкости и газа в пористых средах, теория взрывных процессов на основе гидродинамической схемы, теплопередача при движении жидкостей и газов.

Число новых моделей и схем в механике деформируемых сред быстро растет, и сами эти модели и схемы становятся уже объектом классификации и изучения. Выявляются некоторые новые, заслуживающие внимания тенденции. Хорошо разработанные схемы находят новое применение вне области, для которой они были первоначально созданы (например, поведение металла при пробивании брони кумулятивным снарядом начали изучать, рассматривая его как идеальную жидкость). В других случаях используют при исследовании одной и той же среды разные схемы в соответствии с теми условиями, в каких эта среда находится (например, некоторые тела, ведущие себя при кратковременных нагрузках как твердые, при долговременных малых нагрузках можно считать весьма вязкими жидкостями). Идет также процесс выделения ряда общих понятий в механике и значительное расширение и видоизменение применяемого математического аппарата. Многие ученые характеризуют это как часть происходящей перестройки всей математической физики.



В развитии механики тел переменной массы и теории реактивного движения после Великой Отечественной войны можно наметить два этапа. Первый из них — примерно до середины 50-х годов, — когда основное внимание уделяется движению с отбрасыванием частиц, притом главной целью является уже не столько решение отдельных задач, сколько систематическое построение теории. В значительной мере это было выполнено А.А. Космодемьянским. В его работе «Общие теоремы механики тел переменной массы» (1946) исходным является уравнение Мещерского, которое удовлетворяется для каждой из точек системы переменной массы. Отсюда получены законы изменения главного вектора количества движения, кинетического момента и кинетической энергии для тела переменной массы.

В работе Космодемьянского «Общие теоремы динамики тел переменной массы» (1951) опубликованы результаты, относящиеся к уравнениям Лагранжа в обобщенных координатах и к каноническим уравнениям. Доказано, что в случае, когда абсолютные скорости отбрасывания частиц равны нулю и внешние силы, действующие на тело переменной массы, имеют потенциал, канонические уравнения движения для тела переменной массы принимают форму уравнений Гамильтона для механической системы постоянной массы, а уравнения Лагранжа второго рода для тела переменной массы имеют такую же форму, как и для тела постоянной массы.

При изучении абсолютного движения тела переменной массы необходимо учитывать не только изменение массы тела, но и перемещение центра инерции внутри тела. Абсолютное движение центра инерции тела переменной массы подробно рассмотрено в изданных в 1952 г. лекциях А.А. Космодемьянского «Лекции по механике тел переменной массы». Там же приведено доказательство общих теорем механики тел переменной массы, когда центр масс не перемещается внутри тела. Указанные работы опираются на исследования Мещерского, в которых применяются методы аналитической динамики системы материальных точек и твердых тел. Другое направление в механике переменной массы представляют работы, в которых используются методы, близкие к методам механики сплошных сред. Такое направление можно условно назвать гидродинамическим. Ф.Р. Гантмахер и Л.М. Левин в работе «Об уравнениях движения ракеты» (1947) для случая движения ракеты и вообще тела переменной массы вывели теоремы количества движения и кинетического момента, исходя не из специально развитых положений механики переменной массы, а непосредственно из законов изменения главного вектора количества движения и кинетического момента для некоторой системы частиц постоянной массы. Аналогична постановка вопроса в ряде работ В.С. Новоселова.

В работе В.С. Новоселова «Некоторые вопросы механики переменных масс с учетом внутреннего движения частиц» (1957) выведены законы изменения главного вектора количества движения и кинетического момента для систем и тел переменной массы при возможном относительном движении частиц, рассмотрен закон изменения кинетической энергии для системы и тела переменной массы, получены уравнения Лагранжа второго рода для голономных систем с переменными массами в общем случае возможного относительного движения частиц, указаны необходимые и достаточные условия, при выполнении которых в механике переменных масс справедлив принцип Гамильтона — Остроградского. В другой работе Новоселова «Уравнения движения нелинейных неголономных систем с переменными массами» (1959) строится неголономная механика тел переменной массы: рассмотрены уравнения движения тел с неопределенными множителями Лагранжа, уравнения вида С.А. Чаплыгина, П.В. Воронца, Г. Гамеля (1877—1954), обобщается принцип Гаусса и выводятся уравнения, аналогичные уравнениям П. Аппеля (1855—1930). В работе «Движение механических систем со связями, зависящими от процесса изменения масс» (1960) В.С. Новоселов рассмотрел системы, на которые наложены связи, изменяющиеся вместе с изменением масс.