Добавить в цитаты Настройки чтения

Страница 61 из 110

Герц выдвигает третью систему принципов механики, которая отличается от первых двух главным образом тем, что она пытается исходить только из трех независимых основных представлений: времени, пространства и массы. Герц ссылается при этом на Г. Кирхгофа{191} (1824—1887), который в своем курсе механики еще раньше отметил, что эти три независимые друг от друга понятия необходимы, но также и достаточны для развития механики. Вместо понятий силы и энергии, исключаемых Герцем из основных понятий, он вводит представление о скрытых связях, скрытых массах и скрытых движениях.

Основной закон, связывающий фундаментальные понятия пространства, времени и массы воедино, Герц выражает в форме, представляющей весьма тесную аналогию с обычным законом инерции: «Каждое естественное движение самостоятельной материальной системы состоит в том, что система движется с постоянной скоростью по одному из своих прямейших путей»{192}.

Это положение объединяет закон инерции и принцип наименьшего принуждения Гаусса в одно единое утверждение.

Прямым путем Герц называет такой, для которого все его элементы имеют одинаковое направление, а кривым — такой, когда направление его элементов изменяется. В качестве критерия кривизны, как и в геометрии точки, вводится скорость изменения направления при изменении положения. Из всех возможных путей в тех случаях, когда движение системы ограничено связями, выделяются некоторые, обладающие особенно простыми свойствами. Это прежде всего пути, которые во всех положениях искривлены так незначительно, как это только возможно. Именно их Герц называет прямейшими путями системы. Затем идут пути кратчайшие. При известных условиях понятия прямейших и кратчайших путей совпадают: «Это соотношение, — говорит Герц, — будет нам вполне понятно, если мы вспомним теорию поверхностей… Перечисление и систематизация всех возникающих при этом соотношений относится к геометрии системы точек… Так как система n точек выражает 3n многообразие движения, которое, однако, может быть уменьшено связями системы до любого произвольного числа, то в результате возникает большое число аналогий с геометрией многомерного пространства, причем эти аналогии заходят отчасти так далеко, что те же самые положения и обозначения могут иметь место как здесь, так и там»{193}.

Смысл такого метода изложения, по мнению Герца, состоит прежде всего в том, что он устраняет искусственное разделение механики точки и механики системы, позволяя рассматривать любое движение как движение системы. Кроме того, такой геометризованный метод выражения «ярко оттеняет тот факт, что метод изложения Гамильтона скрывает свои корни не в особых физических основах механики, как это обычно принимают, но что он, собственно говоря, является чисто геометрическим методом, который может быть обоснован и развит совершенно независимо от механики и который не находится с ней в более тесной связи, чем любое другое используемое механикой геометрическое познание»{194}. Это нашло свое выражение в аналогиях, которые обнаружены при сопоставлении идей Гамильтона в механике и геометрии многомерного пространства.

Герц доказывает, что для голономных систем каждый прямейший путь есть геодезический и наоборот, причем геодезическим путем материальной системы он называет путь, длина которого между двумя любыми положениями отличается лишь на бесконечно малую величину высшего порядка от длины любого другого бесконечно близкого соседнего пути между теми же положениями (в неголономных системах это не имеет места).

Кратчайший путь между двумя положениями есть геодезический, но геодезический путь не есть обязательно кратчайший, хотя он всегда есть кратчайший между любыми двумя достаточно близкими соседними его положениями, находящимися на конечном удалении друг от друга.

Необходимым и достаточным аналитическим условием геодезического пути является требование, чтобы интеграл между какими-либо двумя положениями пути имел вариацию, равную нулю, причем вариации должны исчезать на пределах интеграла и вариации координат и их дифференциалы должны удовлетворять уравнениям — условия системы. Исчезновение вариации интеграла не есть, однако, достаточное условие того, чтобы путь между конечными положениями был кратчайшим; для этого необходимо, чтобы его вторая вариация была существенно положительной. Для достаточно близких соседних положений пути это условие всегда выполняется.





Уже из этого изложения можно видеть две особенности механики Герца, связанные с тем, что в исходных предпосылках он ограничивается тремя, а не четырьмя (как это имеет место у Ньютона и Гамильтона) понятиями. Во-первых, отсутствие среди основных понятий понятия силы (или энергии), что приводит к усложнению изложения и не дает простого пути для решения конкретных задач. Во-вторых, особо важная роль, отводящаяся геометрическим образам. Если первая особенность ограничивала практическое значение его механики, то вторая была чрезвычайно важным этапом на пути синтеза аналитического и геометрического аспектов механики.

Затем Герц доказывает теорему, в которой выражена, по существу говоря, глубокая связь его механики с геометрической оптикой и теоремой Бельтрами — Липшица. Теорема Герца гласит: если построить во всех положениях некоторой поверхности прямейшие пути (а следовательно, в случае голономной системы — геодезические), перпендикулярные к этой поверхности, и отложить вдоль этих путей равные длины, то получим новую поверхность, которая будет пересекать эти прямейшие пути также перпендикулярно.

Таким образом, в самой сердцевине механики Герца заключаются геометрические соотношения, которые связывают ее с общей теорией поверхностей. Пространственные формы механического движения материальных тел играют поэтому у Герца основную роль.

Естественно возникает вопрос об отношении принципа Герца к принципу наименьшего действия Эйлера — Лагранжа в его классической форме и в форме, которую придал ему Якоби, и к принципу Гамильтона.

Герц посвятил этому вопросу несколько разделов своей книги. Так как в голономной системе прямейший путь между двумя достаточно близкими положениями является одновременно кратчайшим, то естественный путь такой системы между указанными положениями короче, чем какой-нибудь другой возможный путь между теми же положениями. Эта теорема сразу приводит к принципу наименьшего действия в форме Якоби. Согласно обычному пониманию механики, отмечает Герц, приведенная теорема представляет собой частный случай теоремы Якоби, а именно случай, когда силы отсутствуют. Однако, «по нашему мнению, наоборот, предпосылки полной теоремы Якоби следует считать более узкими, а теорема Якоби является специальной формой выражения нашей теоремы»{195}. Такая точка зрения Герца основана на том, что Якоби для получения своего выражения принципа наименьшего действия должен был воспользоваться законом сохранения энергии, чтобы с его помощью исключить время, в то время как принцип Герца совершенно не зависит от этого закона. Кроме того, выражение Якоби в отличие от принципа Герца справедливо лишь для голономных систем.

Легко показать, далее, следуя Герцу, что естественное движение свободной голономной системы переводит систему из данного начального в достаточно близкое конечное положение за более короткое время, чем какое-либо другое возможное движение с одинаковым постоянным значением энергии, так как в этом случае энергия и скорость одинаковы и время перехода пропорционально длине пути. В этом случае интеграл по времени от энергии равен произведению данного постоянного значения энергии на промежуток времени перехода. Таким образом получается принцип наименьшего действия Эйлера — Лагранжа. Отношение этого принципа к принципу Герца такое же, как принципа наименьшего действия в форме Якоби.