Добавить в цитаты Настройки чтения

Страница 4 из 43

Кривизна пространства

Взяв за отправную точку принцип эквивалентности и пройдя сквозь головокружительную серию мысленных экстраполяций, ведомый безошибочным эстетическим чутьем, Эйнштейн пришел к понятию кривизны пространства. Чтобы как-то осознать связь гравитации с кривизной, представим себе стол с резиновой поверхностью вместо привычной твердой. Бильярдный шар, положенный на этот стол, образует углубление. Материальное тело вызывает деформацию такого же рода в окружающем пространстве. Если положить на стол два шара, то каждый из них стремится попасть в углубление, образованное другим. Возникающая в этом случае сила «притяжения» полностью аналогична силе гравитации. Все же деформация пространства, вызванная даже таким гигантским телом, как Солнце, едва заметна. Кроме объяснения гравитации теория Эйнштейна предсказывает различные тонкие эффекты, а также объясняет аномалию в движении планеты Меркурий, в свое время заставившую исследователей придумать новую планету – Вулкан, которую, однако, никто не наблюдал.

Что еще более важно, теория относительности предсказывает точно такое же поведение света в гравитационном поле, как и поведение тел под действием силы тяжести. Это предсказание, подтвержденное в 1919 г. во время солнечного затмения, сделало Эйнштейна известным и широкой публике. Итак, направленные вверх световые волны, так же, как и камень, брошенный вверх, должны терять энергию движения. в то же время свет по самой своей природе вынужден, как всегда, распространяться со скоростью 300000 км/с и не может замедляться. Свет, оказывается, теряет энергию, уменьшая свою частоту и увеличивая тем самым длину волны. в результате такого эффекта цвета радуги совсем незаметно смещены в сторону красного. Даже длина волны радиосигнала, направленного в космическое пространство с Земли, увеличится на одну миллиардную часть. Поэтому внешнему наблюдателю будет казаться, что токи в антенне, излучающей радиоволны, колеблются медленнее, чем на самом деле, хотя и очень ненамного, т.е. что на поверхности Земли время течет медленнее, чем во внешнем пространстве. Разница составляет всего лишь около одной секунды в пятьдесят лет, но современные атомные часы способны заметить ее. в Электротехническом институте им. Галилео Феррариса в Турине первый такой эксперимент позволил измерить эту величину для разности высот между Плато Роза и Турином. Потеря во времени хоть и мала, но приводит к серьезным техническим последствиям, и современная навигационная сеть, использующая спутники связи, должна учитывать этот эффект. на поверхности Солнца эффект замедления времени в тысячу раз больше, а на нейтронных звездах, плотность вещества которых такова, что масса, равная массе Солнца, занимает область с размерами, сравнимыми с размерами города, указанный эффект достигает 10%. в черной дыре, наконец, мы доходим до 100%, и, следовательно, на поверхности черной дыры течение времени вовсе прекращается. Гравитационное поле здесь настолько сильно, что не выпускает свет наружу. Список парадоксальных явлений можно было бы продолжить.

Развитие общей теории относительности

Естественной лабораторией для проверки общей теории относительности служит все космическое пространство: собранные вместе массы миллиардов галактик вызывают искривление пространства в глобальном масштабе. По этой причине самые значительные успехи теории достигнуты при обращении на современной основе к наиболее глубинным космологическим периодам времени. Модель «большого взрыва» (the big bang), согласно которой рождение Вселенной произошло примерно 20 млрд. лет назад при гигантском взрыве (см. стр. 49), представляет собой наиболее замечательный результат такого развития теории.

В последние годы своей жизни Эйнштейн интенсивно работал над проблемой объединения теорий гравитации и электромагнитных явлений в некую «сверхтеорию». Эти его попытки не увенчались успехом, равным образом как и усилия многих других, жаждавших опередить великого мастера в достижении цели.

В некотором смысле Эйнштейн оказался жертвой той лавины, которую он сам привел в движение. Перед его смертью уже существовал целый калейдоскоп ускорительных установок; происходили открытия все новых элементарных частиц, но никто еще не мог предугадать те сложные законы симметрии, которым они подчиняются. с другой стороны, Эйнштейн не имел привычки внимательно следить за эмпирическими данными. Его три основополагающие работы 1905 г. были порождены скорее соображениями эстетического характера: речь шла о том, чтобы путем утверждения новых фундаментальных принципов исключить кажущуюся асимметрию в прежних законах. Специальная теория относительности все же родилась, хотя Эйнштейн при этом не ссылался на опыт Майкельсона и Морли; теория броуновского движения увидела свет, несмотря на то что ее автор был знаком только поверхностно с работой Броуна, выполненной за сто лет до этого.





По этой причине, в частности, Эйнштейн останется в нашей памяти как человек уникальный и неповторимый. Он не оставил после себя выдающихся учеников, как в отличие от него сделали Ферми, Эренфест, Зоммерфельд и другие великие ученые. Поэтому будущая единая теория поля хотя и получит в наследство от Эйнштейна общий идейный импульс и философскую постановку проблемы, но будет отличаться своими характерными техническими деталями и конкретной практической реализацией. в настоящее время уже предприняты определенные усилия для синтеза такой теории и работа в этом направлении продолжается. Следующее десятилетие, возможно, окажется для физики решающим.

Будет поучительно проанализировать теперь более детально кажущийся парадокс часов (или близнецов), о котором мы уже упоминали. Он долгие годы служил любимым коньком антирелятивистов. Результаты сегодняшних экспериментов неопровержимо свидетельствуют о справедливости специальной теории относительности, и парадокс близнецов поэтому сохраняет немаловажное педагогическое значение.

Парадокс основан на явлении растяжения времени. Движущиеся относительно нас часы покажут замедленное время в соответствии с формулой, связывающей время и скорость их движения. При приближении к скорости света часы будут практически казаться остановившимися. Под часами мы понимаем не только будильник, стоящий на столе, но в общем случае любую физическую систему, которая совершает повторяющиеся движения. Если бы мы могли наблюдать за астронавтами в космическом корабле, удаляющемся от нас со скоростью 240000 км/с (4/5 скорости света), то мы бы увидели, что их движения замедленны: чтобы продвинуть стрелку на три минуты, их часам потребовалось бы пять наших минут.

Можно представить себе короткий научно-фантастический рассказ об истории, происшедшей с братьями-близнецами Тимом и Томом. Тим отправился к Альфе Центавра, а Том оставался на Земле. Расстояние до Альфы Центавра выражается круглой цифрой в 4 световых года. При скорости 240000 км/с на путешествие туда, как показалось Тому, потребовалось точно пять лет, и еще пять лет ушло на обратный путь; Тиму же показалось, что на весь путь ушло всего шесть лет: действительно, часам Тима потребовалось пять часов времени Тома, чтобы продвинуться всего на три. в результате, вернувшись домой, Тим оказался на четыре года моложе, чем его брат.

Путаница возникает тотчас, когда близнецы меняются ролями; в самом деле, столь же справедливо утверждение, что Том с точки зрения Тима удаляется и что его часы покажутся Тиму отставшими ровно на столько же. Следовательно, Тим по возвращении вроде бы должен увидеть более молодого Тома. Поскольку подобный эксперимент в принципе может быть выполнен, ясно, что из двух ответов только один может быть верен (или, как утверждают некоторые недоброжелатели, ни тот ни другой), и наши рассуждения ошибочны.

Ошибка действительно имеется, но ее трудно выявить. Дело в том, что возраст братьев надо сравнивать в один и тот же момент времени, но в теории относительности отсутствует универсальное понятие одновременности. Два события, которые происходят одновременно с точки зрения Тома, вовсе не кажутся одновременными Тиму, и наоборот. При малых скоростях, к которым мы привыкли, этот эффект также имеет место, но мы его не замечаем. Представим себе на железнодорожной станции два светильника, расстояние между которыми один километр, и пусть они зажигаются одновременно. Для пассажиров поезда, прибывающего на станцию, эти два события не синхронны, но они разделены во времени всего на несколько триллионных долей секунды. Эффект едва увеличивается при увеличении скорости поезда и расстояния между светильниками. Оцененный же применительно к астронавту Тиму, он становится весьма существенным и должен быть принят во внимание.