Страница 38 из 43
Кинетическая теория газов оказалась фундаментом, на котором была построена термодинамика; она также породила статистическую механику, в которую существенный вклад внесли Гиббс, Больцман и Эйнштейн.
В прошлом столетии Кельвин пользовался очень высоким авторитетом, сравнимым с авторитетом самого Ньютона, и, во всяком случае, он был гораздо более известен, чем Максвелл. Спустя сто лет они поменялись местами: физики редко ссылаются на Кельвина (разве только когда речь идет о температуре, отсчитываемой от абсолютного нуля и измеряемой в градусах Кельвина), в то время как исключительное положение Максвелла не вызывает сомнения.
Если для Ньютона 1666 г. был годом исключительным, то для Альберта Эйнштейна таким был 1905 г., когда неизвестный в то время служащий патентного бюро в Берне меньше чем за восемь недель опубликовал три фундаментальные работы, которые легли в основу современной физики.
Альберт Эйнштейн родился 14 марта 1879 г. в г. Ульме, земля Баден-Вюртенберг. Вскоре его родители переезжают в Мюнхен, земля Бавария, где Эйнштейн провел детство и посещал школу до четырнадцати лет. Когда Эйнштейну исполняется пятнадцать, он едет в Швейцарию, где в течение года посещает гимназию и заканчивает среднюю школу. в дальнейшем Эйнштейн продолжает учебу в Цюрихском политехникуме, где одним из его учителей был Минковский. в этот период он проводит несколько месяцев в Милане, куда его привез отец, неудачливый предприниматель. Наконец, с 1902 г. Эйнштейн живет в Берне и работает экспертом патентного бюро. Здесь он одновременно с работой готовился к защите диссертации, состоявшейся в 1905 г.
Этот год оказался переломным для Эйнштейна и современной физики; в течение короткого промежутка времени он опубликовал свои фундаментальные работы по молекулярной физике (о броуновском движении), по теории относительности и о фотоэлектрическом эффекте. Став уже известным, Эйнштейн получает в 1909 г. предложение (и принимает его) занять кафедру в Цюрихском университете; в 1911 г. он переезжает в Прагу, а в 1912 г. снова возвращается в Цюрихский политехникум. в 1914 г. Эйнштейн приглашен в Берлин в качестве преемника Ван'т Хоффа в Прусской Академии наук, а также в качестве директора Института физики. в 1916 г., наконец, сформулирована общая теория относительности; эта исключительно оригинальная теория получила блестящее подтверждение во время полного затмения Солнца в 1919 г., когда было обнаружено отклонение световых лучей, идущих от звезд, под действием гравитационного поля Солнца, причем именно такое отклонение, какое предсказал Эйнштейн. Приход Гитлера к власти в Германии вынудил Эйнштейна переехать в Принстон, США. в 1955 г., находясь в зените славы, Эйнштейн скончался, не закончив работу над одним из последних вариантов теории, которая должна была объединить электромагнитные и гравитационные явления.
Для правильной оценки деятельности Эйнштейна, разумеется, нельзя ограничиваться простым перечислением дат из жизни и академических титулов ученого, так же как нельзя опираться на огромное количество устных рассказов и анекдотов об Эйнштейне. Поэтому мы остановимся, пусть даже поверхностно, на основных этапах той части его деятельности, которая имеет отношение к развитию современной физики.
Первая работа Эйнштейна, которую мы неоднократно упоминали, посвящена фотоэлектрическому эффекту. Чтобы понять всю ее важность, следует вернуться на несколько сотен лет в прошлое. в 18 в. широкое распространение имела теория, поддерживаемая авторитетом Ньютона. Согласно этой теории, свет состоял из мельчайших частиц (корпускул), испускаемых светящимися объектами. Волновая теория, предложенная Гюйгенсом в 1690 г., имела очень мало приверженцев, среди которых был математик Эйлер. в начале 19 в. Юнг, а впоследствии и Френель обнаружили, что два световых луча могут при определенных условиях складываться и взаимно уничтожаться, причем эти эффекты чередуются. Такое явление совершенно непонятно с точки зрения корпускулярной теории Ньютона, но вполне естественно, если свет имеет волновую природу. Что свет представляет собой явление электромагнитное, было показано в работах Максвелла (1864 г.). Однако, хотя уравнения Максвелла превосходно описывают всевозможные варианты распространения световых волн, они совершенно не способны, как ни странно, объяснить явления излучения и поглощения света.
Особенно таинственным казался во времена Эйнштейна так называемый фотоэлектрический эффект, открытый Герцем в 1887 г. Ультрафиолетовое излучение, падающее на металлическую поверхность в пустоте, может поглощаться атомами металла; излучение, передавая энергию электронам, выбивает их из металла. Свет представляет собой быстро колеблющиеся электрические и магнитные поля, как раз и вызывающие выход электронов из металла. Казалось бы, увеличение интенсивности света должно привести к увеличению средней энергии электронов. Однако, как ни странно, вылетающие электроны все имеют одинаковую энергию, хотя их число увеличивается.
Для объяснения этого явления Эйнштейн выдвинул гипотезу квантов света (названных впоследствии фотонами), согласно которой световое излучение существует в виде квантов, энергия которых принимает дискретные значения hν, где h – постоянная Планка, а ν – частота света.
Если атом поглощает фотон, то энергия последнего идет на преодоление некоторого заданного энергетического барьера (энергии связи), чтобы оторвать электрон от атома, и на сообщение ему энергии для вылета из металла. Следовательно, энергия вылетевшего электрона зависит только от частоты падающего излучения.
Согласиться с существованием фотона означало возвратиться к дискредитированной корпускулярной теории Ньютона, и поэтому работа Эйнштейна была воспринята крайне сдержанно. Миликен впоследствии вспоминал, что он «в 1915 г. был вынужден полностью признать (на основе эксперимента) справедливость вывода Эйнштейна, несмотря на кажущуюся его неразумность, связанную с тем, что он, казалось бы, опровергал все, что мы знали о волновой природе света». Почти восемнадцать лет, несмотря на свой успех, Эйнштейн был единственным, кто действительно считал гипотезу фотона справедливой; полемика на эту тему наконец прекратилась, когда в 1923 г. был открыт эффект Комптона, состоящий в том, что фотон сталкивается с электроном и сообщает ему энергию отдачи (точно так же, как при столкновении бильярдных шаров). Гипотеза квантов света оказалась решающей для построения квантовой механики, и, хотя Эйнштейн не был одним из ее непосредственных создателей, его можно считать их предшественником.
Свидетельством поразительной творческой активности Эйнштейна явилось появление всего через несколько недель после опубликования первой работы новой, посвященной броуновскому движению. в 1828 г. английский биолог Роберт Броун собирал пыльцу различных растений, которую он хранил в ампулах в виде жидкой суспензии. Под микроскопом зернышки казались подверженными непрерывному и длившемуся бесконечно действию какой-то беспорядочной силы. Предлагались различные объяснения этого явления, в том числе основанные на представлении о «живой» воде!
Растительное происхождение пыльцы не имеет никакого отношения к природе описанного явления. Эйнштейн в своей работе количественно показал, что в основе броуновского движения лежат непрерывные столкновения атомов жидкости с зернышками пыльцы. Дрожание, замеченное Броуном, являлось свидетельством атомной структуры вещества и беспорядочного движения атомов, предвосхищенного Максвеллом. Работа Эйнштейна запоздала для спасения Больцмана, морально искалеченного жесткой оппозицией школы Оствальда и Маха; тем не менее она ознаменовала собой окончательное признание существования атомов, которое нам уже кажется очевидным фактом. Трудно себе представить, что в конце прошлого века некоторые весьма авторитетные физические школы все еще отрицали этот факт.
Работа, посвященная броуновскому движению, представляет собой продолжение предыдущей и, по существу, тесно связана с фотоэлектрическим эффектом. в основе обоих явлений лежит теория флуктуаций. Если, например, подвесить в полости, заполненной излучением, зеркальце, то оно подвергнется непрерывным ударам фотонов, и его поведение также будет очень похоже на дрожание гранул пыльцы Броуна. на сходство этих явлений обратил внимание один Эйнштейн.