Добавить в цитаты Настройки чтения

Страница 22 из 43



Здесь я могу дать ответы только на какие-то частные вопросы, которые прольют свет на уже имеющиеся результаты исследований и перспективы развития физики, да рассказать об усилиях, которые предпринимаются для достижения синтеза наших знаний. По определению, физика – это наука о материи (веществе), и она призвана заниматься выработкой теорий, которые сжато и ясно объясняли бы все более расширяющийся спектр явлений; она должна, кроме того, подвергать эти теории экспериментальной проверке, прежде чем дать им путевку в жизнь.

Итак, вещество наблюдают и изучают, выделяя какие-то его физические свойства и определяя, как со временем меняется его состояние. Для физика само вещество отождествляется с совокупностью всех наблюдаемых свойств, но такой жесткий подход ослабляется нашей неспособностью определять и изучать все возможные характеристики вещества.

Среди наиболее важных свойств вещества имеются такие, которые меняются непрерывно и смысл которых интуитивно особенно очевиден. Таковы, например, положение, скорость и энергия материального тела. Существуют другие, дискретные, свойства, они называются квантовыми: мы можем сделать выбор между серой и кислородом, но промежуточной возможности просто нет.

Положение тела задается в трехмерном пространстве, и это отражает очевидный эмпирический факт; согласно теории относительности, время следует рассматривать как четвертое измерение. Таким образом, сценой, или ареной, для физики служит четырехмерное пространство-время. Вполне возможно, что в не слишком далеком будущем структура пространства-времени сможет быть понята на основе постулатов более простых и фундаментальных, чем современные.

Идеальная теория должна быть способна вычислять силы, с которыми действуют друг на друга разные составные части вещества. Согласно жесткой детерминистской схеме, или схеме Лапласа, зная распределение вещества в какой-то заданный момент времени, мы должны иметь возможность с помощью уравнений движения предсказать это распределение в последующие моменты времени. По разным причинам такую программу осуществить не удается. Мы не можем задать состояние вещества полностью: чтобы определить состояние некоторого объема, потребовался бы устрашающе длинный список всех отдельных атомов в химических соединениях, а составить такой список мы заведомо не в состоянии. Судя по современному уровню научных исследований, в ближайшие годы почти наверняка будут выявлены какие-то новые, еще не открытые свойства материи. Так что физические теории всегда имеют дело с неполным набором экспериментальных данных; хорошо известным примером этого является ньютоновская теория тяготения.

Пределы применимости физики Ньютона

«Мир» Ньютона состоял из материальных тел, единственной характеристикой которых, если не считать положения, скорости и энергии, служила масса m. Для измерения m к телу прикладывают известную силу F, затем измеряют ускорение тела а и вычисляют массу, используя знаменитую формулу F = ma; таким образом, величина m служит мерой инерции тела, его сопротивления движению под действием заданной силы. Чудесным образом оказалось, что силу притяжения между ньютоновскими телами можно определить, зная только их массы и расстояния между ними. Этого достаточно также для описания их движения.

Такая идеализация допустима, если тела не рассматриваются на слишком близком расстоянии: так, Земля не является точкой, она имеет океаны, твердую кору и жидкие недра. на ней рождаются приливы и отливы, которые хоть и незначительно, но все же влияют на движение Земли вокруг Солнца, да и на движение Луны. Насколько существенны такие эффекты, зависит от состава земного вещества и его атомной структуры. Но силы, действующие между атомами, не гравитационной природы, и поэтому здесь теории Ньютона недостаточно.

Вплоть до 1900 г. свойства материи и наличие исключительного разнообразия форм ее проявления объясняли химическим взаимодействием примерно ста элементов, соответствующих различным атомам. Как свидетельствует огромное количество химических опытов, речь идет о феноменологическом описании, основанном на понятии валентности и вполне подходящем с точки зрения многих технических приложений.

Открытие электрона в конце прошлого столетия положило конец мифу о неделимости атома. Согласно модели Бора – Резерфорда, атом подобен миниатюрной солнечной системе, состоящей из положительно заряженного тяжелого ядра, вокруг которого вращаются электроны, заряженные отрицательно. в целом атом нейтрален.



Электромагнитные и ядерные силы

Таким образом, мы столкнулись с силой нового типа – электромагнитной силой. в нашем введении мы не будем рассказывать об историческом пути, приведшем в 1859 г. к открытию Дж.К. Максвеллом уравнений электромагнитного поля, открытию, стоящему в одном ряду с теорией Ньютона. Согласно теории Максвелла, материальное тело характеризуется еще одним свойством – электрическим зарядом. Зная его, мы знаем, как тело взаимодействует с электрическим и магнитным полями, а также как оно их создает. Противоположные заряды притягиваются, а заряды одинакового знака отталкиваются. Итак, существуют положительные и отрицательные заряды; в теории же Ньютона массы всегда положительны и всегда притягиваются.

Внутри вещества положительные заряды (ядра) стремятся к отрицательным (электроны), чтобы вместе создать нейтральное вещество (атомы); оставленное в покое вещество стремится «спрятать» электромагнитное поле. с другой стороны, большому количеству вещества, собранного вместе, свойственны большая масса и, следовательно, гравитационное притяжение. Поэтому, даже если электрическая сила взаимодействия электрона и ядра несравнимо больше сил тяготения, в конце концов начинают доминировать именно последние, когда в игру вступают большие количества вещества.

Атом Бора вмиг свел химию к одной из глав физики, а классификацию элементов – к классификации атомных ядер. в свою очередь оказалось, что ядра состоят из нуклонов, положительных (протонов) и нейтральных (нейтронов), с массой примерно в две тысячи раз большей массы электрона. Но, как сказал Фейнман, успех физической теории определяется не столько задачами, которые с ее помощью решаются, сколько значением новых задач, возникающих на ее основе.

Гравитоны, фотоны, и пионы

Одна из первых задач касалась природы сил, за счет которых нуклоны держатся вместе внутри ядра; вскоре оказалось, что они примерно в сто раз больше электрических и что на расстояниях в несколько ферми (1 ферми равен одной триллионной доле миллиметра) их действие прекращается. Другой вопрос касался самой природы электромагнитного поля. Выдающимся достижением Максвелла было осознание того, что световые волны наряду с радиоволнами, рентгеновским и γ-излучением представляют собой очень быстрые колебания электромагнитного поля; все они имеют одну и ту же природу и различаются только частотой.

Свет, падая на металлическую поверхность, может поглотиться и передать свою энергию электрону, который при этом вылетает из атома (фотоэлектрический эффект). в своей первой работе, опубликованной в 1905 г., Эйнштейн объяснил некоторые расхождения наблюдавшегося фотоэлектрического эффекта с теорией Максвелла. в сущности, Эйнштейн выдвинул гипотезу о существовании новой частицы – кванта света, или фотона, гипотезу, принявшую окончательный вид к концу 1923 г.

Энергия электромагнитной волны не может передаваться непрерывно, а выдается, согласно закону Планка, пакетами (квантами) определенной величины, пропорциональной частоте. Частота радиоволн столь низка, и соответствующие пакеты столь малы, что создается впечатление непрерывного излучения. в случае же γ-излучения фотон ведет себя как настоящая частица, как «атом света». Фотон имеет двойственную природу: он одновременно представляет собой и частицу, и волну. Даже гравитационные волны, предсказываемые общей теорией относительности, должны быть квантованы: им соответствует гравитон.