Добавить в цитаты Настройки чтения

Страница 12 из 12



Если бы меня спросили, что можно было бы сделать с потенциалом P300, я бы ответил: максимум, просто задействовать переключатель. «Включить» – «Выключить». 0 (ноль) – 1 (единица). «Да» – «Нет». Однако, усложнив разработку, можно было бы добиться и того, чтобы заданным образом выделялась любая из 26 букв алфавита. Вообще, двоичный код помогает добиться очень многого. Так все компьютеры, в сущности, и действуют: гоняют туда-сюда внутри своих микросхем нули и единицы и благодаря этим челночным операциям успешно выполняют свою работу.

Я начал понимать, каким образом активность мозга реализуется физически. Когда система улавливает в вашей голове некую мысль и выводит ее на экран монитора, последнюю уже нельзя воспринимать как нечто нематериальное. Что-то происходит в реальности . И не нужен уже никакой бессмертный эфирный Дух. Вместо него – ваши собственные нейроны, передающие друг другу электрические импульсы и подпитывающие себя крошечными порциями серотонина и глютамина. Вы начинаете ощущать происходящее. И знаете, что компьютер тоже знает об этом.

Все это оказалось одновременно несколько разочаровывающим и глубоко проникновенным. Очевидным и таящим в себе открытие.

Я сдернул с себя шлем и поблагодарил Штефана. Клейкое вещество, улучшающее контакт, оставалось на моих волосах, но, слегка расчесав их пальцами, я обнаружил, что оно действует как гель для укладки. Так что, близко пообщавшись с машиной, я чувствовал заметный душевный подъем.

Что умеют наши руки: дактильная азбука

К тому времени я уже провел в университете Галладета половину текущего семестра, изучая ASL II. Курс ASL I, за который я взялся осенью, на поверку оказался куда более трудным, чем я предполагал.

Занятия длились две недели по шесть часов в день, и то была работа на износ. Погружение было полным: обычная английская речь не использовалась совсем. В учебном пособии не приводились определения используемых знаков. Прилагаемый к учебнику видеокурс также не был переведен на английский. Вы получали на руки краткое описание того, чему посвящен тот или иной диалог, и более ничего. Стало очевидно, что, как предполагалось, я должен самостоятельно выяснить смысл каждого знака.

Передача слов по буквам, или ручная азбука (fingerspelling) [47] , была еще более трудным делом. Она применяется для побуквенной передачи (spelling) имен и новых слов. Рукой, всякий раз принимающей уникальную форму, можно передать каждую букву алфавита. К примеру, чтобы показать букву «A», следует свернуть четыре пальца, поджимая их к ладони, а большой оставить выпрямленным. Дактилология – малая часть ASL, но она принципиально важна. С помощью ручной азбуки я мог медленно показать, как меня зовут. Однако, наблюдая за такими же действиями окружающих, иногда чувствовал себя беспомощным. Их пальцы двигались так быстро, что я совершенно терялся. Пока я успевал сообразить, что кто-то, пользуясь ручным алфавитом, уже начал передавать слово, само оно уже давно было «произнесено».

Зато я был докой во всем, что касалось фонем английского языка – со всем их беспорядком. Меня всегда очень занимал вопрос, каким образом сознание может уцепиться за что-то надежное в бурном лингвистическом потоке. Допустим, коммуникация в определенный момент началась – но что мозг человека делает далее? Пусть некто говорит, обращаясь ко мне: «Мою собаку зовут Ровер». Каким образом последнее «р» в кличке Ровер позволяет мне помнить, что имеется в виду именно та собака, о которой идет речь, и что она принадлежит говорящему, а само это «р» – часть собачьего имени? Как мозг связывает настоящее с прошлым?



Подобная постановка вопроса может показаться академической, но суть дела имеет прямое отношение к развитию технологий сканирования головного мозга. Как станет ясно из дальнейшего изложения, «чтение» памяти – это на самом деле считывание сигналов мозговой активности. Поэтому нам необходимо выяснить, каким образом мозг хранит воспоминания. А уж после этого разберемся в том, как технология выявляет их, анализируя нашу деятельность.

Как действует оперативная память мозга

Нейроны способны временно хранить поступающую информацию, изменяя силу синаптических связей [48] . Сила последних зависит, в частности, от наличия в синаптической области различных химических веществ и потому может варьироваться в определенном диапазоне. Изменение силы синаптических связей в пучке нейронов равнозначно репрезентации событий во внешнем мире. В некоторых случаях влияние на структуру подобных связей могут оказывать и сигналы, поступающие из других областей мозга. Скажем, кто-то из друзей называет вам по памяти номер телефона: «555-4347». Вы беретесь за трубку своего мобильного, повторяя про себя: «555-4347, 555-4347». Ваш внутренний голос воспроизводит для вас звуковой сигнал, посредством коего вы и узнали этот номер, – и синаптические связи обновляются. Такова одна из схем, которой можно отобразить работу краткосрочной – или оперативной – памяти. Обратная связь подобного рода (feedback structure) служит созданию так называемой рекуррентной сети (recurrent net).

В рекуррентной (с возвратным сигналом) сети информация движется как снизу вверх, так и обратно. Наше ухо улавливает звук, после чего соответствующий сигнал поступает в определенную группу нейронов в слуховой зоне коры головного мозга. Однако туда же поступает сигнал и из другой части мозга – той, которая обрабатывает информацию на более высоком уровне, абстрагируя ее и усиливая значимость поступивших данных. То есть начинает информационный цикл восходящий поток данных (из внешнего мира), однако осуществляет их последующую обработку нисходящий – управляемый высшими отделами мозга. Вы можете повторять про себя набираемый номер до тех пор, пока вам не ответят на телефонный вызов. Аналогичным образом вы запоминаете начало фразы, в то время как говорящий уже добирается до ее конца.

Конечно, такое объяснение работы оперативной памяти мозга является упрощенным, однако оно дает отправную точку для понимания механизма майндридинга. Используя имплантированное устройство, которое воспринимало бы сигнал, проходящий по нервным путям, нам нужно сначала уловить нисходящий поток данных, а затем – с помощью более или менее сложного алгоритма – дешифровать этот сигнал. Причем, если данные восходящего потока относительно конкретны (фонетическая оболочка слова), то нисходящего – относительно абстрактны (смысловое ядро слова). Быстрые и довольно беспорядочные движения глаза дают информацию для первого из них, а устойчивые зрительные образы объектов обеспечиваются данными, поступающими по второму.Казалось бы, так в наш мозг поступают только впечатления. Однако в действительности подобным же образом можно прочитать практически все , чем заполнено наше сознание: воспоминания, эмоции, концепции, внутренний диалог. Хотя все эти составляющие осознаваемого нами опыта не столь уж четко отграничены друг от друга. Подобно воспоминаниям и переживаниям , слова служат своего рода ярлыками, которые мы используем для классификации всего того, что есть в нашем сознании. Впрочем, существует и особый механизм, с помощью которого мозг обеспечивает «подъем» информации. В главе 5 мы в общем виде рассмотрим аргументацию Вернона Маунткастла (Vernon Mountcastle) и Джеффа Хокинса (Jeff Hawkins), полагающих, что существует некий универсальный алгоритм, поддерживающий восходящее направление любой ментальной операции. Как только мы сумеем изучить его, получим возможность считывать данные о соответствующей ментальной активности и влиять на характер протекающих процессов – посредством тех имплантов, в которых будет применяться особый, декодирующий, алгоритм, призванный заменять исходный.

Бог со словарем из двух слов

Конец ознакомительного фрагмента. Полная версия книги есть на сайте ЛитРес.