Добавить в цитаты Настройки чтения

Страница 64 из 115

Деятельные люди и в детстве деятельные люди. Они не рассуждают: «Вот подрасту и покажу себя». Они сразу начинают себя показывать. Глушко отлично учится. Работает в обсерватории в юношеском кружке при одесском отделении Русского общества любителей мироведения (POJIM), ведет наблюдения Марса, Венеры, Юпитера. Организует дома химическую лабораторию, ставит опыты со взрывчатыми веществами (опыты эти рекомендовать молодым читателям не могу: вещь опасная и в список заслуг Валентина может не входить), собирает книги о взрывчатых веществах. Строит модель космической ракеты по своим чертежам. Берет уроки живописи. Учится музыке сначала в Одесской консерватории, потом в Одесской музыкальной академии. Пишет и публикует заметки по проблемам межпланетных полетов в газетах и журналах.

«В 1924 году окончил среднюю школу, – вспоминает Валентин Петрович. – На выпускных экзаменах был приятно удивлен, узнав, что освобожден от экзамена по физике. Для получения свидетельства об окончании я прошел почти полугодовую практику (до конца 1924 года), работая сначала слесарем, затем токарем на одесском арматурном заводе «Электрометалл» имени Ленина».

В очень трудные, холодные, голодные, пулями озвученные годы [30] он в постоянном физическом и умственном движении, в детской, юношеской, а потом и во взрослой работе, сам задает он себе высокий темп жизни, активно расширяет горизонты своих знаний, интеллекта и сил. Сам делает себя. И когда летом 1925 года Валентин приезжает в Ленинград и поступает в университет, он уже твердо знает, зачем он приехал, что он будет делать дальше. Он знакомится с Я. И. Перельманом, читает книги К. Циолковского, Г. Оберта, Р. Эсно-Пельтри, Р. Годдарда, В. Гомана. Ю. Кондратюка. В журнале «Наука и техника» за 35 лет до полета первой в мире орбитальной станции «Салют» восемнадцатилетний Глушко публикует статью «Станция вне Земли» и, предугадывая программу будущих полетов таких станций, пишет, что «не только астрономия и метеорология обогатятся ценнейшими вкладами и широчайшими горизонтами новых исследований. В таком же положении окажутся все естественные науки». Удивительно ли, что первую теоретическую работу выпускника ЛГУ – «Металл, как взрывчатое вещество» – одобряют ученые-эксперты, а Тихомиров приглашает Валентина Петровича в ГДЛ?

Первый в мире электротермический двигатель В. П. Глушко.

Свои воспоминания Глушко назвал «Путь в ракетной технике». Этот долгий путь не всегда был легким и праздничным. Встречались на нем и рытвины неудач, и ухабы разочарований, и ямы жестокой несправедливости. Но это был всегда прямой путь. С того ясного, чистого весеннего утра, когда приехал он в Лесное под Ленинградом, где «папа Иоффе» [31] отвел для него помещение в своей высоковольтной лаборатории, с того самого майского утра 1929 года Валентин Петрович Глушко занимался всегда одним делом – ракетными двигателями. Думаю, что сегодня академик Глушко – крупнейший в мире авторитет в этой области ракетной техники.

Опытный ракетный мотор, ОРМ (1931 г.).

Ну, а тогда он совсем не был похож на академика. Худенький, аккуратный молодой человек, в галстуке, в отглаженной рубашке с воротничком, уголки которой по моде того времени стягивались металлической запонкой, скромный, тихий, воспитанный, обращаетна себя внимание окружающих невероятным упорством и настойчивостью в работе. Для старика Тихомирова ЭРД – самоцель, для Глушко – средство достижения цели. А цель – космический полет. Расчеты показывают, да и в опытах он видит это. – электрический ракетный двигатель имеет тягу ограниченную, вывести в космос пилотируемый корабль он не сможет. ЭРД – вторичен, потому что это двигатель невесомости, но ведь в невесомость надо сначала попасть. Когда тебе 21 год, и ты сам придумал нечто такое, что до тебя никто не додумался сделать, и «нечто» это принято и одобрено учеными авторитетами, и тебе дали средства, людей, помещение, оборудование, с тем чтобы ты свою придумку усовершенствовал, очень нелегко сказать себе: «Нет, мой ЭРД – не главное сейчас. Пожалуй, я начал с конца. Космической технике нужно другое». Это было нелегко сказать, но Валентин сказал себе это. «Мне стало ясно, – вспоминает академик Глушко. – что при всей перспективности электрореактивный двигатель понадобится нам лишь на следующем этапе освоения космоса, а чтобы проникнуть в космос, необходимы жидкостные реактивные двигатели, о которых так много писал Константин Эдуардович Циолковский. С начала 1930 года основное внимание я сосредоточил на разработке именно этих моторов…»

Все тогда было для него в новинку и научить некому. Циолковский о ЖРД писал, но ни расчетов тепловых процессов, ни чертежей, ни тем более конструкций у него нет. Цандер убежденный сторонник ЖРД, и подход у него к ним инженерный, конкретный. Но он слишком увлечен своей идеей дожигания в двигателях металла конструкций, а проблема эта по конструкторскому своему оформлению невероятно трудная, и упорство Цандера невольно тормозит всю работу. Очень быстро, в первые год-два работы, Валентин понимает, что проблема ЖРД – это не какая-то одна неведомая крепость техники, которую можно взять приступом, лобовой атакой. Скорее это целая оборонительная линия. Общая проблема разбивается на ряд отдельных проблем, решая которые последовательно можно в конце концов построить жидкостный ракетный мотор, как тогда называли ЖРД.





Начать хотя бы с системы подачи. Чем выше давление в камере сгорания, тем выше скорость истечения, тем эффективнее ракетный двигатель. Но давление окислителя и горючего перед входом в камеру сгорания должно быть еще выше, иначе его не удастся туда впрыснуть, – это ясно. Как создать давление подачи? Сначала это делали аккумуляторы давления. Ставили баллон со сжатым газом, открывали кран, газ выходил и выдавливал жидкость из бака в камеру сгорания. Вместо баллона можно поставить пороховую шашку: топливо будут выдавливать газы, которые образуются при горении пороха. Разумеется, все дело в том, насколько один параметр влияет на другой, но в принципе образуется заколдованный круг: чем совершеннее и мощнее двигатель, тем выше давление подачи, тем прочнее, а значит, тяжелее должны быть баки, чтобы его выдержать, тем тяжелее вся ракета. Но чем тяжелее ракета, тем более совершенный и мощный нужен ей двигатель. До какого-то предела аккумуляторы способны решить проблему, а дальше нужны насосы. Топливо под маленьким давлением, а следовательно, из облегченных баков будет поступать в насосы, которые и создадут высокое давление подачи. И прочным надо будет сделать только трубопроводы от насоса к камере сгорания – это куда проще. Значит, проблема в том, чтобы определить границы применения той или иной системы подачи. «Изыскание наилучших способов введения в камеру сгорания реактивного мотора компонентов топлива, горючего и окислителя, является одним из основных вопросов, решение которых стоит в непосредственной связи с возможностью использования в технике движущихся реактивных аппаратов», – писал Глушко в 1931 году.

Наши первые жидкостные реактивные двигатели.

Это только одна из многих проблем. Каким геометрически должен быть двигатель? Чем длиннее сопло, тем мощнее двигатель. Но опять-таки, прирост мощности за счет длины имеет предел: чем длиннее сопло, тем оно тяжелее. Прирост мощности при очень длинном сопле не компенсирует утяжеления конструкции. Выигрыш можно получить, если отыскать наивыгоднейшую геометрическую форму. «Оказывается целесообразным применять на практике криволинейные сопла найденных очертаний», – это из технического отчета Глушко 1931 года.

30

[30] Советская власть установилась в Одессе окончательно лишь 7 февраля 1920 года.

31

[31] «Папа Иоффе» – так называли физики академика Абрама Федоровича Иоффе, главу большой школы советских физиков, в то время – заведующего высоковольтной лабораторией Ленинградского электрофизического института. (Примеч. автора.)