Добавить в цитаты Настройки чтения

Страница 39 из 49



А еще выяснилось, что многие авторы и гораздо раньше наблюдали пострадиационное восстановление, но давали ему иное объяснение. Все, кому приходилось облучать живые клетки и исследовать их через разное время, обращали внимание на то, что число клеток с хромосомными мутациями постепенно уменьшается. Если времени прошло столько, что клетки могли успеть разделиться несколько раз, ничего удивительного нет: поврежденные клетки погибают во время деления. Но как быть, если то же самое наблюдается и среди клеток, делящихся первый раз? Такую картину объясняли тем, что на разных стадиях жизненного цикла клетки имеют разную чувствительность. Теперь следовало считать, что уменьшение эффекта связано с восстановлением: чем дольше клетка не делится, тем у нее больше времени для залечивания повреждений.

Представление о существовании пострадиационного восстановления было настолько неожиданным и казалось настолько противоречившим общепринятым взглядам, что многие встретили его в штыки. Мы огорчались. Но скептическое отношение к нашим утверждениям имело и свою положительную сторону. Нужно было получить действительно безупречные доказательства эффекта восстановления.

И такие доказательства были найдены и мной, и Корогодиным, и другими авторами. Я не буду приводить своего доказательства, так как оно довольно сложно и требует математики. Расскажу о доказательстве, предложенном Корогодиным, оно наиболее наглядно, и ему нельзя отказать в простоте и изяществе.

Опыты с дрожжами вызвали два основных возражения. Ведь дело, может быть, вовсе не в восстановлении, а либо в том, что неповрежденные клетки за время их выдерживания делятся и к моменту посева здоровых клеток становится больше, либо в том, что поврежденные клетки лизируются, то есть, попросту говоря, умирают и растворяются и таким образом выпадают из учета. Чтобы доказать реальность эффекта восстановления, нужно было поставить опыты, которые исключали бы возможность таких объяснений.

Для опытов избрали очень высокую дозу гамма-лучей: 120 тысяч рентген. Если клетки, облученные такой дозой, сразу высевать на питательную среду, то лишь 0,2 процента их сохраняют способность образовывать колонии. Если же после облучения их в течение двух суток выдержать в воде, то колонии дают около 40 процентов клеток. Предстояло выяснить, связана ли разница с тем, что клетки при их выдерживании действительно восстанавливают способность к образованию колоний, или эффект объясняется тем, что во время выдерживания поврежденные клетки успевают погибнуть, а неповрежденные — размножиться. Как это проверить?

Дрожжевые клетки облучают в довольно густой суспензии, содержащей в одном кубическом сантиметре около миллиона клеток. Затем взвесь разбавляют водой в десять тысяч раз и на поверхность среды в каждой чашке наносят один кубический сантиметр смеси. Таким образом, в каждую чашку попадает около 100 клеток. Если эту процедуру провести сразу после облучения, то лишь в двух чашках из десяти появится после инкубации по одной колонии. Если через двое суток, то в каждой чашке будет примерно по 40 колоний. Однако, как уже сказано, этот эффект можно объяснять не только восстановлением, но и тем, что за время выдерживания размножились клетки, способные давать колонии.

Опыт, о котором идет речь, был поставлен несколько иначе. Взвесь клеток в воде сразу после облучения и разбавления разлили по отдельным пробиркам — по одному кубическому сантиметру в каждую, а через двое суток содержимое каждой пробирки перенесли в чашки с питательной средой. После инкубации во всех чашках выросло большое число колоний — в среднем по сорок на чашку, как и в обычных опытах. Если бы эффект выдерживания сводился только к размножению неповрежденных клеток, следовало бы ожидать совершенно иного результата: в большинстве чашек не должно было бы быть вообще колоний, а примерно в двух из десяти их должно было бы вырасти очень много.

Вряд ли полученные результаты можно объяснить иначе, чем восстановлением клеток от повреждений.

Повлиять на судьбу первичных лучевых поражений… Эта заманчивая задача оказалась вовсе не такой сложной. Ведь эффект пострадиационного восстановления был открыт в опытах, где под влиянием тех или иных условий наблюдаемое повреждение уменьшалось.

В первых экспериментах применялось намачивание после облучения в растворах цистеина. При этом уменьшался процент клеток с хромосомными мутациями, вызванными облучением. Казалось, что нам очень повезло: первое же вещество, которое мы испытали, дало желаемый эффект! Хотелось найти еще какое-нибудь вещество, обладающее сходным действием. Поставили опыт, где облученные семена намачивали в растворах разных аминокислот — веществ, родственных цистеину. Ничего подобного мы не ожидали. Все, абсолютно все аминокислоты дали такой же эффект, как и цистеин.



Разные аминокислоты уже испытывали раньше в качестве защитных веществ, то есть непосредственно перед облучением. Большинство не вызывало никакого эффекта, а остальные по степени защиты заметно уступали цистеину. А здесь все аминокислоты оказались равноценными. Как будто бы следовал вывод о том, что способность оказывать защиту свойственна лишь цистеину, а влияние на скорость пострадиационного восстановления — общее свойство аминокислот.

Для проверки этого вывода ставится новая серия опытов, где используются растворы представителей самых разнообразных классов химических веществ. И здесь результат оказывается неожиданным: снова все вещества дали примерно одинаковый эффект. Ускоряли восстановление такие непохожие друг на друга и простые вещества, как спирт и поваренная соль.

Это уже переставало быть интересным — искать вещества, ускоряющие восстановление. Слишком уж их много и вряд ли их сравнение поможет что-нибудь сказать о механизме восстановления. Теперь более заманчивым казалось найти вещества, которые бы замедляли восстановление либо ускоряли, но значительно больше, чем цистеин и его многочисленные собратья.

Поисками занялся Лев Сергеевич Царапкин, с которым мы ставили первые опыты по восстановлению. Он испытал десятки различных веществ и нашел все, о чем только можно мечтать. Есть средства, не влияющие на процесс восстановления, усиливающие его, подобно цистеину (таких больше всего), тормозящие восстановление, оказывающие значительно больший эффект, чем цистеин. Тут уже было над чем подумать.

Набор наиболее интересных веществ, и тормозивших восстановление и дававших «сверхзащиту», оказался не случайным. Обе группы связывала одна общая черта: все они имели то или иное отношение к клеточной энергетике. Отсюда следовал вывод: для восстановления нужна энергия, значит, восстановление — результат активной деятельности клетки. О том же самом говорили и данные совершенно других исследований — статистических. Такие несхожие науки, как биохимия и математика, дополняли друг друга.

В опытах по восстановлению хромосом обычно сравнивают либо процент клеток, имеющих мутации, либо среднее число мутаций на одну клетку. Оба эти показателя приводят, как правило, к совпадающим выводам. Мы попробовали, кроме того, использовать еще и третий показатель: среднее число повреждений на клетку. Результаты получились довольно неожиданные. Почти всегда, когда дополнительное воздействие изменяло число клеток с мутациями (и, конечно, общее число мутаций), степень повреждения отдельных клеток оставалась постоянной. Выходило, что при пострадиационном восстановлении уменьшается только число поврежденных клеток.

Этот тип восстановления назвали поклеточным. Он говорил о том же, что и сравнительный анализ влияния разных веществ: процесс восстановления связан с жизнедеятельностью всей клетки в целом.

Но как же конкретно происходит восстановление? К чему сводится его механизм? Вопрос очень непростой. Ведь даже предположить что-то о механизме восстановления можно, сначала узнав, что представляют собой первичные наследственные повреждения.