Добавить в цитаты Настройки чтения

Страница 29 из 56



Итак, по химическому строению хромосомы — нуклеопротеиды, соединение белка с нуклеиновой кислотой.

Но какое из этих веществ ответственно за передачу наследственных признаков? Белок или нуклеиновая кислота? А может, оба вместе? И наконец, каким образом на микроскопически маленьких образованиях, хромосомах, «записано» огромное число «сведений» о чертах строения будущего взрослого организма или пусть даже отдельной клетки?

Загадка казалась неразрешимой. Решить ее одной генетике (науке о наследственности) было не под силу. Здесь нужны разносторонний, комплексный подход, усилия ученых многих специальностей. И особенно это было необходимо по отношению к нуклеиновой кислоте. Биологическая роль и строение белков во многом не представляли секрета. А что можно сказать о нуклеиновых кислотах?

В 1871 году двадцатипятилетний физиолог швейцарец Мишер, работавший в лаборатории немецкого биохимика Гоппе-Зейлера, опубликовал несколько работ. Он сообщил, что нашел в ядрах лейкоцитов неизвестные вещества, содержащие фосфор. Мишер назвал их нуклеинами («нуклеус» — ядро). Конечно, он тогда не знал, что открыл новую главу в биологии. Не подозревал он и о том, что глава эта долго еще останется открытой на первой странице.

Почти 70 лет с момента открытия нуклеиновых кислот (так их стали называть впоследствии) оставалось неизвестным их назначение.

Между тем нуклеиновые кислоты находили в составе буквально каждого живого организма, каждой его клетки. Их нашли и у животных, и у растений, и у микробов, и даже у мельчайших живых существ — вирусов. Некоторые вирусы вообще состояли только из белка и нуклеиновой кислоты. Значит, догадывались ученые, нуклеиновые кислоты должны иметь какое-то очень важное значение. Но какое? Этого никто не мог сказать. Назначение нуклеиновых кислот оставалось загадкой. И в учебниках после описания химического состава этих соединений и некоторых их химических свойств, хотя и говорилось, что они играют важную биологическую роль, никогда не конкретизировалась — какую.

Только перед самой войной, в 1941 году, советский ученый Кедровский и швед Касперсон высказали догадку, что нуклеиновые кислоты принимают участие в синтезе белка. Кроме того, удалось установить, что существуют два типа нуклеиновых кислот: дезоксирибонуклеиновая кислота, располагающаяся всегда в клеточных ядрах, и рибонуклеиновая, находящаяся в протоплазме. Сокращенно их обозначают теперь как ДНК и РНК.

Вот, пожалуй, и все, что знали биологи об этих соединениях до 1944 года, когда были опубликованы поразительные работы английского микробиолога Эвери с сотрудниками.

По установившейся в науке о микробах терминологии кокки — это бактерии, имеющие круглую форму. Пневмококки — бактерии, вызывающие крупозную пневмонию, воспаление легких. Микробиологи давно выяснили, что у пневмококков существуют разновидности, или типы, которые и были обозначены римскими цифрами I, II, III, IV и т. д. Различия, стоящие за этими цифрами, довольно четкие, а для высших организмов и весьма ощутимые, так как связаны они с вирулентностью микробов, то есть их способностью распространяться в организме и вызывать болезнь. Но есть и различия, которые можно просто увидеть и по ним отличить один тип от другого.

У III типа есть массивная полисахаридная капсула, окружающая клетки, которая у пневмококков II типа под микроскопом имеет вид узкой полоски. Вирулентность пневмококков, их способность вызвать болезнь как раз зависит от наличия или отсутствия полисахаридной капсулы.

Английский микробиолог Гриффит работал с пневмококками, изучая их способность поражать мышей. И привлекали Гриффита именно пневмококки II и III типа. Результаты своих опытов он опубликовал в 1928 году. Они были столь разительны, что объяснить их автор не мог. И не удивительно.

Понадобилось еще 16 лет усилий целых коллективов ученых и сложнейшие исследования, чтобы понять, что же все-таки произошло в опытах Гриффита. А опыты были не ахти какие сложные. Повторить их не составляло большого труда. Но вот объяснить?!



…Итак, в распоряжении Гриффита пневмококки II и III типов.

Вначале проводится проверка штаммов на их вредоносность.

Вот мышам вводится взвесь пневмококков II, бескапсульного типа (авирулентного). Как и следовало ожидать, все животные остаются живы. Применение штамма III (вирулентного) типа, имеющего массивные полисахаридные капсулы, приводит к поголовной гибели мышей.

Теперь Гриффит берет пробирку со взвесью пневмококков этого штамма и нагревает ее на газовой горелке. Температура должна убить культуру микробов, и они станут безвредными. И действительно, введя животным убитых нагреванием пневмококков, Гриффит убеждается, что ни одна из мышей не гибнет. Собственно говоря, пока ничего поразительного не происходит, все естественно и закономерно. Но Гриффит продолжает эксперимент дальше.

В пробирку с убитыми температурой пневмококками III типа добавляется взвесь живой культуры II типа пневмококков. Они живые, но, как показывает контроль, для мышей безвредны (авирулентны). Теперь мышам вводится смесь пневмококков двух штаммов; вирулентного, но мертвого III и живого, но авирулентного II типа. И неожиданный результат — все животные гибнут. Почему? Казалось бы, такая смесь не должна причинять животным никакого вреда, ведь порознь ни убитые огнем пневмококки III типа, ни живые, но вообще безвредные пневмококки II типа не дали ни одного случая гибели.

Может быть, в опыте допущена какая-нибудь ошибка? Ну, например, нагревание убило не всех пневмококков III типа? Гриффит тщательно проверяет каждый этап эксперимента, ставит его несколько раз подряд, но эффект все тот же: смесь штаммов вызывает безусловную гибель подопытных мышей. В группах контрольных, где используется каждый штамм отдельно, все животные живы. Необъяснимо, но факт! И совсем уже поразительно другое: когда из погибших животных Гриффит выделяет пневмококков, то все они оказываются… III типа.

Под микроскопом видны массивные полисахаридные капсулы, а гибель мышей, которым Гриффит вводит этих микробов, подтверждает их высокую вирулентность. Что же произошло? Почему ранее убитые нагреванием пневмококки III типа «воскресли»? Объяснить этого Гриффит не в состоянии. Не могут найти объяснения и другие исследователи, повторившие опыты Гриффита. Но странное явление установлено, и его надо изучить и понять. Конечно, мертвые пневмококки III типа не «воскресали». Но что же тогда? Может быть, в смеси штаммов, используемых Гриффитом, живые авирулентные пневмококки II типа в присутствии убитых нагреванием превращались в III тип, приобретая его капсулу и вирулентность? Но ведь это же невероятно. Такого никогда не бывало. И все-таки английский микробиолог Эвери с сотрудниками решает вести работу, исходя именно из такого невероятного предположения.

Причем Эвери хочет изучить возможность такого превращения не в опытах на животных, что у биологов называется in vivo, а исследовать это явление вне организма, то есть in vitro, в пробирке. Задача заключалась в том, чтобы выделить и определить химическую природу веществ, под влиянием которых может произойти превращение (трансформация) одного типа пневмококков в другой. И вот, проработав несколько лет и преодолев огромные технические трудности, Эвери и его сотрудники на нескольких парах штаммов пневмококков доказали, что трансформация одного типа в другой существует.

Насколько это была кропотливая и трудоемкая работа, можно судить хотя бы по тому, что в первых опытах Эвери частота трансформации составляла лишь одну на миллион обрабатываемых клеток.

Вещество, под влиянием которого происходит превращение пневмококков, Эвери назвал трансформирующим фактором. Дальнейшее изучение химической природы выделенного вещества, проведенное Эвери, Мак-Леодом и Мак-Карти, анализы, проделанные другими исследователями, позволили установить, что это дезоксирибонуклеиновая кислота (ДНК). Произошло это в 1944 году.