Страница 36 из 42
Но это неверно. «Логик-теоретик» не просто умело решает задачи, он находит принцип доказательства, что равноценно настоящему открытию. Причем он думает «с конца»: не составляет план поиска от первого до последнего пункта, а ищет решение, отталкиваясь от конечной цели — доказательства теоремы. И, идя от конца к началу, машина выдвигает новые частные теоремы и ставит себе подцели доказать их. И делает это уже по собственному усмотрению.
Метод «мышления», который применяла машина, довольно часто пускаем в ход и мы с вами.
Мысленно идти в обратном порядке — один из многих эвристических приемов, используемых человеком при решении самых разных проблем. Он хорошо известен, например, всем, кто любит решать головоломки. Особенно наглядно его преимущества видны, если вспомнить, как легко найти выход из Т-образного лабиринта, проследив путь от места, где размещена цель, к началу, и как трудно это сделать, если идти в прямом направлении.
Стоит, может быть, упомянуть, что авторы детективных историй с «неожиданной» развязкой в самом конце нередко начинают обдумывать сюжет именно с развязки, а потом уже приходят к началу повествования. Так легче строить остросюжетный рассказ или роман. Читателям же предоставляется блуждать в нарочно запутанных сюжетных ходах с начала к концу, то есть он должен идти по лабиринту наиболее трудным путем.
Долгое время вообще считалось, что лабиринт (не Т-образный, а более сложный, напоминающий ветвистое дерево) превосходно иллюстрирует схему поисков любого сложного решения.
В центре такой паутины ходов находится цель — искомый ответ. Решая задачу, человек словно бродит по запутанным коридорам лабиринта: то заходит в тупики, то кружит на одном месте, то возвращается назад, чтобы снова двинуться вперед. И так, пока, наконец, не достигнет заветной цели — центральной площадки. Теория лабиринта, которая пришла в свое время на смену пресловутым пробам и ошибкам, на первых порах казалась весьма удачной. Опыты с живыми, а потом с механическими мышами, учившимися искать путь в лабиринте, стали классической моделью обучения. Поведение электронного Тезея Шеннона (как шутливо назвал он свою мышь) стало основой для решения многих сложных задач, скажем, игры в пять фишек (пятнадцать). Да и шахматные задачи — по существу лабиринт, только уж очень запутанный.
Но лабиринт, может быть, и помогает понять что-то в механизме мышления, однако характеризует его чисто внешне, не раскрывая внутренних пружин.
Конечно, если искать выход из лабиринта, применяя небезызвестный алгоритм «Британского музея» — простой перебор всех вариантов, это может продолжаться очень долго. Количество маршрутов в этом случае будет достигать астрономической цифры, так что и математик не сможет их пересчитать и выбрать правильный. Вместо лабиринта ходов возникают лабиринты формул, из которых выбраться нисколько не легче.
Нужны какие-то более экономичные приемы. Несомненно, нашему мозгу они известны, и он их успешно применяет. А вот как до них добраться исследователям?
Те же американские психологи — Ньюэл, Шоу, Саймон — попытались отгадать эвристические приемы, которые человек использует для решения самых разных задач: и при поиске математических доказательств, и при решении конструкторских задач, и при анализе физических проблем, и при создании музыки, и при постановке правильного диагноза, и при подборке необходимых красок или единственно нужных слов. Короче говоря, они попытались объять необъятное: создать машину, способную решать самые разные творческие задачи — и научные и стоящие перед людьми искусства.
И такая удивительная машина была создана, вернее — разработана программа ее работы. Назвали ее не очень поэтично — «Универсальный решатель проблем», или сокращенно, по первым буквам английских слов: ДПС.
Взявшись за столь сложную задачу, ученые оказались перед запутаннейшим мыслительным лабиринтом. Как найти в нем кратчайшую дорогу к цели? Психологические эксперименты, проводившиеся раньше, не давали законченного ответа на этот вопрос. Они раскрывали какие-то отдельные детали поиска, не рисуя всей картины. Пришлось засесть за новые опыты, составленные по специальной программе.
Их участниками стали «вечные мученики науки» — студенты колледжа. Им написали несколько выражений, похожих на алгебраические. Например, такое: Р (~p>Q). И попросили преобразовать его в другое, которое выглядело бы так: (QVP)R. Для этого давался набор правил. Думать, разумеется, надо было вслух.
Те, кто знаком с математической логикой, несомненно, узнают эти выражения. Студенты же рассматривали их как простой набор каких-то значков и букв. Это было сделано нарочно. Ведь машине в будущем тоже предстояло иметь дело с абстрактными символами. Чтобы машину и человека по возможности уравнять в правах, условия эксперимента и приблизили к обстановке, в которой должна действовать машина.
Кроме того, так можно было избавиться от всего лишнего: второстепенных деталей, ненужных эмоций, вольно или невольно сопровождающих психологический эксперимент, если он проводится в форме игры или заключается в решении разного рода головоломок или даже просто занимательных задач с «аквариумом», весами, свечкой и тому подобным.
Здесь задача была предельно суха и абстрактна.
Это была задача вообще. Больше двадцати студентов решали ее. И хотя они думали неодинаково, все же удалось обнаружить общие принципы, которыми руководствуется человек при решении разных проблем. Наиболее отчетливо выявились два эвристических приема. Один заключается в том, чтобы разложить сложную задачу на несколько частных, более простых и решать их по очереди, постепенно приближаясь к цели.
Практически это выглядит так. Человек анализирует задачу и видит, что у него нет средств превратить данные условия в искомое решение. Тогда он смотрит, нельзя ли уменьшить разрыв между условиями и требованиями. Найдя способ это сделать, снова сравнивает ситуацию, которая получилась в результате его действий, с конечной целью и ищет средства перевести новый вариант задачи в желаемое решение, и так много раз.
Прием этот так и был назван — «Анализ средств и целей». Если же описывать его не сухо, строго по-научному, то вернее всего было бы сказать, что он напоминает детскую игру в «горячо-холодно». Ведь тогда мы тоже ищем цель постепенно, проверяя, ближе мы стали к ней, то есть «теплее» нам, или отдалились — и теперь нам «холоднее».
Но пытаться достичь основной цели, последовательно подменяя ее более близкими подцелями, можно не во всех случаях. Тогда человек поступает иначе. Он сознательно пренебрегает рядом деталей задачи, несколько упрощая ее. Такую упрощенную задачу решить легче. А приемы, использованные для этого, могут подсказать стратегический план решения основной проблемы. «Этот прием, — говорят авторы, — мы применяем, например, когда пытаемся найти пути урегулирования разногласий между народами по аналогии с тем, как мы решаем споры между отдельными людьми».
Ньюэл, Шоу и Саймон наделили машину способностью использовать два эвристических приема, кстати сказать, наиболее часто употребляемых людьми. Это метод «горячо-холодно» и упрощение, огрубление задачи.
Так появился на свет универсальный решатель проблем. И он развил довольно успешную деятельность, даже что-то делал в промышленности.
Однако «универсальным» он все же не оказался. И знаете, на чем машина споткнулась? На шахматах. Она решала сложные, серьезные проблемы, а в игре пасовала.
И не удивительно. Ведь в любой самой сложной задаче всегда известна исходная ситуация — начальная площадка лабиринта, и определена цель — центральная его площадка. А в шахматах область поиска не определена. Здесь столько «коридоров», «площадок», «тупиков», что перебрать все варианты маршрутов не под силу даже быстродействующей вычислительной машине. А подходящих алгоритмов в ее распоряжении не было.