Добавить в цитаты Настройки чтения

Страница 19 из 51

Следовательно, гигантские межзвездные и межгалактические пространства — не какие-нибудь «хладные пустыни», где нет-нет, да и скользнет одинокий луч света, а вместилища сверхгорячего, хотя и очень разреженного, газа микрочастиц. Следовательно, космос живет бурной жизнью — в недрах звезд непрерывно происходят ядерные превращения, и сигналы об этих событиях уходят в космос… И еще появилось множество поражающих воображение «следовательно», и родились новые, достойные наших усилий проблемы.

В 1925 году американский физик Р. Милликен — один из главных участников заоблачных и подводных экспериментов — предложил для потоков высокоэнергетических частиц, приходящих из космоса, очень удачное название — космические лучи. Их природа была окончательно установлена в 1927 году благодаря опытам советского физика Д. Скобельцына, который сфотографировал следы частиц космического излучения с помощью камеры Вильсона. В 1931 году Р. Милликен и Ч. Андерсон провели первое тщательное измерение энергии космических лучей. Для этого пришлось специально придумать метод ослабления пучка, ведь энергия космических частиц была так велика (порядка нескольких гигаэлектрон-вольт), что позволяла им практически не реагировать на отклоняющее магнитное поле!

На этом первооткрывательский период завершился, и космические лучи начали демонстрировать богатейшую копилку сюрпризов. Но, прежде чем мы займемся ее содержимым, давайте немного обсудим возникающие теперь «семейные проблемы».

В конце 20-х — начале 30-х годов физика элементарных частиц делает огромный шаг вперед. Открытие космических лучей, по сути дела, приводит к появлению нового раздела — физики высоких энергий. О точной дате рождения этой науки договориться не так уж и просто. Ее можно связать и с первыми доказательствами, добытыми на шарах, и с определяющими результатами экспериментов Д. Скобельцына. Я думаю, что именно пятилетие 1927–1931 годов было порогом, преодолев который исследователи смогли со всей определенностью сказать: мы имеем дело с новым типом объектов — элементарными частицами с очень высокими энергиями. Во всяком случае, возник основанный на результатах измерений количественный критерий для выделения особого предмета исследований.

Конечно, для выделения особой области исследований нужны не количественные, а уже качественные отличия основных объектов, иначе буквально к каждой цифре энергетического диапазона можно прикрепить по «бирочке» с каким-нибудь оригинальным названием! Но в физике качественная новизна, как правило, связана с преодолением некоторого количественного, часто говорят, критического рубежа. Например, трудно усомниться в том, что твердое тело и жидкость — качественно разные состояния вещества. Не достаточно ли говорить об одном веществе, одновременно указывая температуру ниже или выше точки плавления? Оказывается, нет. При переходе не все свойства меняются непрерывным образом, скажем, высокая упорядоченность атомов в твердом теле возникает «скачкообразно».

В микромире тоже существуют критические значения энергии, они связаны с величинами масс элементарных частиц. Массы частиц (как мы уже договорились, массы будем выражать в энергетических единицах) располагаются в интервале от нуля до примерно 4 гигаэлектрон-вольт, причем подавляющее большинство частиц имеют массы свыше 100 мегаэлектрон-вольт. Космические лучи в отличие от всех ранее известных радиоактивных источников обладали кинетическими энергиями не только в указанном интервале, но и намного большими. Благодаря такому огромному запасу энергии при их соударениях с другими частицами и атомными ядрами атмосферы могли образовываться любые новые частицы. Именно в этом и состоит качественно новый наблюдаемый эффект.

Так что появление на арене космических лучей стало прологом к физике высоких энергий, прологом интересным и многообещающим.

И нам стоит остановиться лишь на нескольких, но, пожалуй, наиболее драгоценных сюрпризах из обширной «космической шкатулки».





Уже в 1932 году Ч. Андерсон, изучая отклонения космических пришельцев в магнитном поле, установил, что некоторые следы в камере Вильсона соответствуют положительно заряженным частицам с массой электрона. Ими оказались позитроны — своеобразные антиподы электронов. Так превратилось в экспериментально доказанный факт предсказание релятивистской квантовой механики, удвоившее наблюдаемый мир. Это предсказание возникло на стыке двух мощных потоков новых представлений следующим образом.

К середине 20-х годов пересеклись пути квантовой механики и теории относительности: необходимо было построить уравнение Шредингера для электрона, движущегося с большими скоростями. С этой проблемой блестяще справился двадцатишестилетний английский физик-теоретик П. Дирак.

То, что обычно называют уравнением Дирака, представляет собой красивую форму записи четырех довольно хитро переплетенных между собой уравнений. Эту систему так называемых дифференциальных уравнений с помощью специальных преобразований можно привести к вполне прозрачной алгебраической форме. И тут возникает эффект, хорошо известный всем, кто решал обычные квадратные уравнения и имел удовольствие получать в качестве корней два числа, равных по абсолютной величине, но имеющих противоположные знаки. Разумеется, для упражнения из задачника по алгебре ничего страшного в таком решении нет. Отрицательные или положительные корни — какая разница! А вот при решении уравнения Дирака оказалось, что именно в этом таятся огромные опасности. Просто-напросто одно из решений этого уравнения соответствовало электрону с положительной массой, а другое — с отрицательной!

Эта неприятность родилась вместе с уравнением Дирака в 1928 году, и неприятность действительно не малая — где это видано, чтобы частица имела отрицательную массу? И вообще, что значит отрицательная масса? Если бы такое было возможно, то обычные электроны стали бы самопроизвольно «проваливаться» на отрицательные энергетические уровни, излучая гамма-кванты! Через три года молодой физик сам предпринял отважную попытку спасти свое творение, подвергавшееся острой и вполне основательной критике со стороны ведущих теоретиков. Он воспользовался недавно открытым принципом Паули, запрещавшим двум электронам находиться в одинаковых состояниях.

К этому времени принцип Паули был хорошо проверен «в деле». С его помощью удалось объяснить правила формирования электронных оболочек различных атомов, придать четкий физический смысл такому чисто химическому понятию, как валентность, то есть в конечном счете установить физическую основу известной группировки элементов в таблице Менделеева.

П. Дирак предположил, что все уровни с отрицательными значениями энергии полностью заполнены обычными электронами, причем всю совокупность таких уровней (ее назвали «дираковским морем») нельзя наблюдать без специального воздействия. Чтобы добыть электрон из «дираковского моря», необходимо сообщить ему положительную энергию, достаточную для образования двух электронов. В этом случае мы будем наблюдать обычный электрон с положительной энергией, но, кроме него, в «дираковском море» возникает вакантное место — своеобразная «дырка», которая обладает свойствами обычного электрона, но с противоположным (положительным) знаком заряда. Разумеется, массы обеих частиц положительны, поскольку вначале была сообщена энергия, которой достаточно на образование двух частиц с массой электрона. Вся разница состоит в том, что «дырка» должна нести положительный электрический заряд — из-за этого ей присвоили и второе имя: антиэлектрон, или позитрон.

Дираковское предсказание касалось на самом деле не только электрона, но и любых частиц — каждой из них полагалось иметь по своему антиподу, лишь в редких случаях частица тождественна своей античастице, например, фотон. Эта идея — поразительный пример предоткрытия, поскольку впоследствии ни один физик не высказал по-настоящему серьезных сомнений не только в существовании отдельных античастиц, но и целых антигалактик. Наблюдались лишь некоторые колебания, связанные с томительно долгим ожиданием экспериментального открытия антипротона (целых три десятилетия!).