Добавить в цитаты Настройки чтения

Страница 5 из 10



Отложите в сторону планы уроков и диапроекторы, мерзкие красочные учебники, компакт-диски и весь остальной парад уродов бродячего цирка, и займитесь с учениками математикой! Учителя живописи не тратят время на чтение учебников и зазубривание  техники —  они просто дают детям рисовать. Они ходят от мольберта к мольберту и подсказывают, направляют:

— Я думала о задаче с треугольником, и кое-что заметила. Смотрите, если треугольник наклонный, то он не занимает половины прямоугольника!

— Превосходное наблюдение! Наше рассуждение с рассечением треугольника предполагало, что вершина находится над основанием. Теперь нам нужна новая идея.

— Попытаться рассечь его иначе?

— Конечно. Попробуй всевозможные идеи. Расскажи потом, что у тебя выйдет!

Как же нам учить детей математике? Выбирая занимательные и естественные задачи, в соответствии с их вкусами, интересами и опытом. Давая им время делать открытия и строить гипотезы. Помогая им выстраивать доказательства и создавая атмосферу здорового и живого математического критицизма. Улавливая, куда меняется их интерес. В общем, выстраивая честные и открытые интеллектуальные отношения с учениками. Это требует слишком большой ответственности и слишком большой открытости — короче, это слишком много работы!

Гораздо проще быть пассивным передатчиком готовых школьных «материалов» и следовать инструкции, как на бутылке шампуня — «лекция, экзамен, повторить» — чем глубоко мыслить о собственном предмете и передавать этот смысл честно и наилучшим образом своим ученикам. Нас просто уговаривают забросить сложную задачу принятия решений своим умом и совестью, и вместо этого «проходить программу». Это попросту путь наименьшего сопротивления:

Выберите правильный ответ:

Авторы учебников относятся к учителям так же, как:

а) фармацевтические компании к докторам;

б) компании звукозаписи к диск-жокеям;

в) корпорации к депутатам

г) все вышеперечисленное.

Труд математики, как и живописи и поэзии, состоит в тяжелой творческой работе. Поэтому математику очень сложно преподавать. Математика — медленный созерцательный процесс. Изготовить произведение искусства занимает время, а, чтобы распознать его, нужен искусный учитель. Разумеется, легче вывесить список правил, чем вести за собой будущих художников, как легче написать инструкцию к телевизору, чем книгу со своей точкой зрения.

Математика — искусство, а искусство должно преподаваться действующими мастерами, или уж, по крайней мере, педагогами, любящими искусство и способными его распознать. Не обязательно учиться музыке у профессионального композитора, но отдадите ли вы ребенка в обучение кому-то, кто не умеет играть сам и не слышал ни одного музыкального произведения за всю жизнь? Возьмете ли вы учителем рисования того, кто не держал в руке карандаша и никогда не был в музее? Как же тогда мы допускаем в учителя математики того, кто не создал ни одного математического произведения, не знает ни истории, ни философии предмета, ни последних достижений математики, и ничего, в конце концов, из того, что он должен преподавать своим несчастным студентам? Что же это за учитель? Как они могут учить тому, чего сами не знают? Я не умею танцевать, но мне и в голову не придет, будто я могу вести танцевальный класс (хоть я мог бы и попробовать, но это выглядело бы ужасно). Разница в том, что я знаю, что я не умею танцевать. Мне никто не скажет, что я хорошо танцую, даже если я знаю кучу танцевальных терминов.



Я не пытаюсь даже сказать, что учителя математики должны быть профессиональными математиками — нет, я и не подхожу к этому. Но не должны ли они хотя бы понимать, что такое математика, знать ее, и любить?

Если учеба превращается в простую передачу информации, если в ней нет делимого с учеником восхищения и чуда, если учителя суть пассивные получатели информации, а не творцы новых идей, есть ли тогда надежда у наших школьников? Если сложение дробей для учителя является случайным набором правил, а не результатом творчества или результатом эстетически обоснованного выбора, тогда несомненно надежды у бедных учеников и быть не может.

Преподавание это не передача информации. Преподавание — это честные интеллектуальные отношения с учениками. Для этого не нужны ни методы, ни пособия , ни специальная подготовка. Для этого нужно только быть самим собой. Если вы сами не можете быть собой, то у вас нет никакого права причинять себя ни в чем неповинным детям.

В частности, вы не можете учить учить. Педагогические курсы — полная лажа. Да, вы можете пройти курсы по раннему детскому развитию и еще чему-нибудь, обучиться «использовать доску эффективно», готовить организованный «план урока» (что, кстати, обеспечивает вашему уроку плановость, следовательно, лживость), но вы никогда не станете учителем, если не будете настоящим человеком. Преподавание — это открытость и честность, желание делиться радостью знания, любовь к учению. Без этого все педагогические дипломы мира не помогут вам, и совершенно бесполезны.

Это так просто. Ученики не пришельцы с Альфы Центавра. Они понимают прекрасное, они видят узор, они от природы любопытны, как и все мы. Просто расскажите им! И — еще важнее — слушайте их!

Симплицио. Ну ладно, мне ясно, что в математике есть элемент искусства и что мы могли бы лучше это объяснять. Но ведь это, наверное, слишком заумная штука, чтобы ожидать ее от школы? Мы же не философов там учим, нам же надо, чтобы они арифметику знали до той степени, чтобы нормально вписаться в общество.

Сальвиати. Это не так! Школьная математика занимается множеством вещей, не связанных с возможностью вписаться в общество — например, алгеброй и тригонометрией. Эти дисциплины совершенно бесполезны для ежедневных дел. Я просто предлагаю вот что: раз мы включаем эти вещи в план среднего образования, так уж делать это органично и естественно. К тому же, как я уже говорил, то, что из предмета можно получить практическую пользу, еще не говорит о том, чтобы на этой пользе обучение фокусировать. Конечно, следует научиться читать, чтобы заполнить бланк на почте, но ведь мы не для этого детей учим чтению. Мы учим их чтению для высшей цели — дать им доступ к прекрасным и значительным идеям. Не только было бы бесполезно учить третьеклассников писать, давая им заполнять бланки налоговых деклараций — это бы и не работало! Мы учимся, потому что нам интересно то, чему мы учимся, здесь и сейчас, не потому, что это будет полезно в дальнейшем. А ведь с математикой мы именно так и поступаем.

Симплицио. Но разве третьеклассники не должны знать арифметики?

Сальвиати. Зачем? Ты хочешь научить их складывать 427 и 389? Это не из тех вопросов, что спрашивают восьмилетки. Да не все взрослые полностью понимают десятичную позиционную арифметику, а ты хочешь, чтобы у третьеклассников была полная ясность? Или тебе все равно, поймут они это или нет? Слишком рано это для такого механического обучения. Конечно, их можно научить, но, думаю, от этого вреда выйдет больше, чем пользы. Лучше дождаться, пока у них не появится естественный интерес к числам.

Симплицио. Так чем же дети должны заниматься на уроках математики?

Сальвиати. Играть! Научите их играть в шахматы и го, гекс и нарды, «ростки» и ним

[12]

Симплицио. Похоже, мы возьмем этим на себя слишком большой риск. Что же, нам не учить школьников арифметике — ведь они не будут уметь складывать и вычитать!

12

«Ростки» (англ. Sprouts) — игра для двух противников, изобретенная Дж, Конвеем, математиком, придумавшим также знаменитый клеточный автомат «Жизнь». Гекс (англ. hex), го (англ. go), ним (англ. nim) — настольные игры. Перечисленные игры интересны (кроме, разумеется, собственно игры) их математическим исследованием.