Добавить в цитаты Настройки чтения

Страница 4 из 21



Способность направлять синтез белков позволила создавать практически любые органы и ткани, что в дальнейшем привело к чрезвычайно большому разнообразию живых систем.

Заключение в мембрану

Заключительной частью появления первых клеток было появление мембраны. Это произошло благодаря свойству определенных органических молекул, называемых фосфолипидами, образовывать в воде замкнутые двухслойные пузырьки.

Так как для синтеза белков необходима физическая близость молекул, то наиболее устойчивыми системами синтеза оказывались наборы макромолекул, попавшие внутрь фосфолипидных пузырьков, которые в итоге стали клеточными мембранами. В результате заключения их в мембрану появилась возможность гораздо более эффективного синтеза белков, так как катализаторы всегда находились в контакте с полипептидами и могли точнее направлять их синтез. После этого появилась возможность построения всех остальных подсистем клетки.

Первая живая система

Таким образом, появление первых клеточных систем на Земле основано на следующих основных свойствах органических молекул:

• автосборка;

• матричное копирование;

• репликация систем;

• синтез белка;

• образование мембраны.

В результате эволюции органических молекул появились замкнутые органические образования, которые в дальнейшем эволюционировали в живые системы. Для появления живой системы должна была возникнуть система реагирования, которая заставила бы клетку отвечать не на само воздействие, а на информацию о нем.

Первой живой системой была клетка, которая изменила свое поведение в ответ на информацию о воздействии.

Появление такой клетки стало возможным путем создания специальных видов белков, которые стали не просто материалом для строительства клетки, а полноценными устройствами для восприятия и обработки информации.

Первые клетки были крайне примитивны. Все органические образования, включая ДНК, были перемешаны и разбросаны по всей клетке. Органические соединения они вырабатывали, питаясь неорганическими соединениями, метаном и двуокисью углерода.

Подобные бактерии встречаются и в наше время, но они могут существовать только в экзотических местах: в горячих минеральных источниках и вблизи действующих вулканов.

Системы отражения первых клеток представляют собой молекулы белка, которые реагируют на концентрацию химических веществ. Двигательным аппаратом являются так называемые жгутики, которые позволяют клетке перемещаться относительно градиента химических веществ.

Таким образом, система отражения этих клеток может реагировать только на непосредственное окружение клетки.

Строматолиты

А как же выглядели самые первые живые организмы? Для того чтобы узнать это, нужно перенестись на другой конец земного шара – в Австралию. В залив Шарк. Особенность этого залива в том, что вода в нем настолько соленая, что в ней не могут жить хищники.

И здесь спокойно существуют самые древние живые организмы – строматолиты (рис. 2). Остатки строматолитов находят по всему земному шару в горных породах, возраст которых достигает трех миллиардов лет.

Рис. 2. Строматолиты



Строматолиты научились синтезировать питательные вещества при помощи энергии солнечного света, то есть освоили фотосинтез. Поэтому можно считать строматолиты предками первых растений.

Появление многоклеточных

Важнейшим шагом эволюции стало появление многоклеточных. При переходе к многоклеточному организму появляется возможность выделения системы отражения в отдельную подсистему, что позволяет сделать ее гораздо более эффективной.

Организованные формы совместного реагирования встречаются даже у одноклеточных организмов. Например, многие цианобактерии не расходятся после деления, образуя нитевидные цепочки до метра длиной. Через регулярные интервалы в такой цепочке встречаются изменившиеся клетки, способные включать атмосферный азот в органические молекулы. Эти специализированные клетки (которых немного) осуществляют фиксацию азота не только для себя, но и для соседних клеток, с которыми они обмениваются продуктами метаболизма.

Последовательность развития многоклеточных легко проследить на примере зеленых водорослей, которые существуют как в виде одноклеточных, так и в виде многоклеточных организмов.

• Род Chlamydomonus – жгутиковые простейшие, живущие отдельно.

• Род Gonium – простейшие, имеющие форму вогнутого диска, биения их жгутиков ориентированы в одном направлении, поэтому они способны приводить колонию в движение. Каждая клетка такой колонии может дать начало новой колонии.

• Род Volvox – колония клеток, которая может включать до 50 тысяч клеток, образующих полый шарик. Индивидуальные клетки соединены цитоплазматическими мостиками, и биения жгутиков скоординированы. Имеется специализация. За воспроизводство отвечает небольшое количество клеток. Остальные клетки неспособны к самостоятельному существованию.

Особенно интересно поведение таких созданий, как клеточные слизевики – миксомицеты (рис. 3). Основную часть жизни эти клетки живут автономно, питаясь бактериями. Но если запас пищи иссякает, то каждая клетка выделяет особое вещество, которое служит сигналом объединения. Миллионы клеток соединяются вместе и образуют слизистую массу, которая перемещается как единое целое. Этот слизевик реагирует на свет и химические вещества уже как целостный организм. А в конечном итоге слизевик принимает вид плодоносящего тела.

Рис. 3. Миксомицеты

Очевидно, что появление специализированных клеток сделало многоклеточные структуры более устойчивыми, чем одноклеточные. Появилась возможность выделения системы отражения в отдельную структуру, которая способна неограниченно развиваться.

Глава 3. Эволюция нервных систем

Немногие из наших предков были совершенными леди или джентльменами; в большинстве своем они не были даже млекопитающими.

Эволюция постепенно отбирала для дальнейшего использования элементы отражающих систем, пока не построила из них самую совершенную систему отражения, которую торжественно вручила человеку.

Эволюция живых организмов

Общая схема эволюции живых организмов представлена на рисунке 4.

Рис. 4. Эволюция живых организмов

Эта схема отражает наиболее крупные этапы эволюции, которые прошли живые организмы. Левый ряд схемы показывает ту ветвь, по которой быстрее всего развивалась нервная система.

Правые ветви на рисунке отражают альтернативные варианты эволюции, уровень систем отражения которых хотя и примитивен, но полностью соответствует их образу жизни. Растения не имеют нервной системы, но те немногие способы реагирования, которыми они обладают – открытие и закрытие цветов, сбрасывание листьев, – вполне достаточны для получения многочисленного потомства. И хотя какая-нибудь травка в таких условиях легко уязвима из-за слабой системы отражения, в целом вид является очень устойчивым.

Особенно продвинулись в этом направлении членистоногие. Общественная жизнь муравьев или пчел настолько сложна, что ученые прошлых столетий считали семьи этих насекомых настоящими государствами.

Другой особенностью таблицы является то, что левый ряд схемы все больше и больше заботится о потомстве. Это означает, что врожденных реакций становится все меньше, а приобретенных – все больше. Успешность выживания начинает определяться не наследственностью, а обучением.