Страница 125 из 140
Приведенные выше возражения являют собой «высокоуровневые» аргументы о невычислимости когнитивных процессов. Но можно было бы попробовать атаковать позиции ИИ и на низком уровне, доказывая невычислимость физических процессов. К примеру, Пенроуз (Penrose 1994) доказывает, что в адекватной теории квантовой гравитации мог бы быть невычислимый элемент. Единственным основанием для такого вывода, однако, оказывается у него вышеупомянутый геделевский аргумент. В самой физической теории нет ничего, что фундировало бы этот вывод; так что если отбросить геделевский аргумент, то исчезает основание верить в невычислимые физические законы. В самом деле, можно было бы попробовать показать, что если каждый элемент мозга, такой как нейрон, имеет лишь конечное множество релевантных состояний, и если существует лишь конечное множество релевантных элементов, то релевантная каузальная структура мозга должна выражаться вычислительным описанием.
Это ведет нас к последнему возражению, которое состоит в том, что процессы в мозге могут быть сущностным образом непрерывными, тогда как вычислительные процессы дискретны, и что эта континуальность может быть сущностной чертой нашей когнитивной компетентности, так что никакая дискретная симуляция не смогла бы воспроизвести эту компетентность. Быть может, создавая приблизительную копию нейрона с помощью элемента, имеющего лишь конечное множество состояний, мы утрачиваем нечто жизненно важное в плане реализации его функций. Оппонент может ссылаться, к примеру, на «чувствительную зависимость от изначальных условий» в определенных нелинейных системах, означающую, что даже небольшая округляющая ошибка на одной из стадий процесса может вести к масштабным макроскопическим различиям на более поздней стадии. Если процессы в мозге именно таковы, то любая дискретная симуляция мозга будет приводить к результатам, отличающимся от тех, которые получаются в континуальной реальности.
Имеется, однако, серьезное основание полагать, что абсолютная континуальность не может быть сущностной характеристикой нашей когнитивной компетентности. Наличие фонового шума в биологических системах означает, что никакой процесс не может зависеть от требования такого уровня точности, который выходит за определенные пределы. За пределами, скажем, 10-10 по соответствующей шкале неконтролируемые флуктуации фонового шума будут препятствовать дальнейшему уточнению. Иначе говоря, если мы создаем приблизительную копию состояния системы с таким уровнем точности (быть может, для надежности, еще более продвинутую — к примеру, на уровне 10-20), то ее работа будет приносить те же результаты, которые реально могли бы быть и у той системы. Конечно, вследствие нелинейных эффектов эта приблизительная копия может продуцировать поведение, отличное от поведения, продуцируемого той системой по данному поводу, — но она продуцировала бы поведение, которое могла бы продуцировать и та система при несколько ином биологическом шуме. При желании мы можем даже приблизительно смоделировать сам процесс шума[187]. В результате симулирующая система будет обладать такими же поведенческими способностями, что и изначальная система, даже если она и продуцирует иное конкретное поведение в конкретных случаях. Мораль такова, что, когда речь идет о дуплицировании наших когнитивных способностей, близкое сходство не хуже тождества.
Верно то, что система с безграничной степенью точности могла бы обладать когнитивными способностями, которые никогда не смогла бы получить в свое распоряжение какая-либо дискретная система. Можно было бы, к примеру, закодировать аналоговую величину, соответствующую реальному числу, n-ое бинарное значение которого равно 1, если и только если n — ая машина Тьюринга останавливается при любых данных на входе. Используя эту величину, совершенная континуальная система могла бы решить проблему остановки, с которой не может справиться никакая дискретная система. Наличие шума, однако, означает, что никакие биологические процессы не смогли бы надежно имплементировать эту систему. Биологические системы предполагают лишь лимитированную точность, и поэтому человеческие и животные мозги должны ограничиваться такими способностями, которые могут быть у дискретных систем.
6. Заключение
Вывод таков, что, похоже, не существует принципиальных преград, которые могли бы сдержать амбиции искусственного интеллекта. Внешние возражения не выглядят очень уж сильными. Внутренние возражения могли бы доставлять большее беспокойство, но анализ аргументов, подкрепляющих эти возражения, показывает, что они не являются убедительными; более того, если аргументы, которые я приводил в предыдущих главах, верны, то у нас имеется серьезное позитивное основание считать, что имплементация надлежащего вычисления повлечет за собой появление сознательного опыта. Так что перспективы машинного сознания можно признать хорошими — пусть и не на практике, но хотя бы в принципе.
Я мало говорил о том, какого рода вычисления, скорее всего, достаточны для сознательного опыта. В большинстве аргументов я использовал для иллюстрации понейронную симуляцию мозга; но вероятно, что для этого могло бы быть достаточным и множество других видов вычислений. Могло бы, к примеру, быть так, что вычисление, отражающее каузальную организацию мозга на гораздо более грубом уровне, передавало бы тем не менее те моменты, которые релевантны для возникновения сознательного опыта. Вероятно и то, что вычисления совершенного иного вида, соответствующие совершенно другим типам каузальной организации, при их имплементации тоже могли бы порождать богатые сознательные переживания.
Эта картина в равной мере совместима как с символьным, так и с коннекционистским подходом к познанию, а также и с другими вычислительными подходами. Действительно, можно было бы попробовать доказать, что центральная роль вычисления в исследовании познания связана с тем, что вычислительные конструкции могут передавать практически любую разновидность каузальной организации. Мы можем рассматривать вычислительные формализмы в качестве источника идеального формализма для выражения паттернов каузальной организации и, более того (в сочетании с методами имплементации), в качестве идеального инструмента для их воспроизведения. Какая бы каузальная организация ни оказалась ключевой для познания и сознания, мы можем ожидать, что какая-то вычислительная конструкция сможет точно передать ее. Можно было бы даже попытаться показать, что именно эта гибкость скрывается за часто упоминаемой универсальностью вычислительных систем. Сторонники искусственного интеллекта не обязаны подписываться под каким-то одним видом вычисления, только и достаточным для ментальности; тезис ИИ столь правдоподобен именно из-за широты класса вычислительных систем[188].
Так что вопрос о том, какой именно класс вычислений достаточен для воспроизведения человеческой ментальности, остается открытым; но у нас есть серьезное основание верить, что этот класс не является пустым.
Глава 10
Интерпретация квантовой механики
1. Две тайны
Проблема квантовой механики почти столь же трудна, как проблема сознания. Квантовая механика дает нам удивительно точные формулы для предсказания результатов эмпирических наблюдений, но картина мира, которую она при этом рисует, лишь с очень большим трудом поддается осмыслению. Как наш мир может быть таким, каким он должен быть, чтобы предсказания квантовой механики оказывались успешными? В ответе на этот вопрос нет ничего даже отдаленного напоминающего консенсус. Как и в случае с сознанием, нередко кажется, что ни одно из решений проблемы квантовой механики не может быть удовлетворительным.
187
Возможно, этим стоит заняться для учета случая, когда конкретная схема округления на уровне дает поведенческий уклон при распределении. Для надежности — при допущении шума на уровне 10-10 — мы должны аппроксимировать систему на уровне 10-20, аппроксимируя на этом уровне и распределение шума.
188
В некоторых случаях — как правило, только в философии сознания — такие термины, как «вычисление» используются для отсылки исключительно к классу символьных вычислений, или вычислений, производимых над репрезентациями (то есть системами, базовые синтаксические элементы в которых являются в то же время базовыми семантическими объектами). Разумеется, этот терминологический вопрос мало на что влияет: с позиции искусственного интеллекта важно то, чтобы в наличии имелась некая формальная система — такого рода, чтобы ее имплементация была достаточна для ментальности, — и неважно, считается ли она «вычислением» согласно этому критерию. Следует, однако, отметить, что в любом случае использовать данный термин подобным образом — значит порывать связи с его истоками в теории вычисления. Даже большинство машин Тьюринга не будут считаться «вычислительными» в этом смысле, так как лишь некоторые из них могут быть интерпретированы в качестве таких, которые производят вычисления над концептуальными репрезентациями. По сходным причинам подобное ограничение класса «вычислений» приводит к утрате (черче — тьюринговой) универсальности вычисления, которая, собственно, является, возможно, одним из самых серьезных оснований для доверия к (функциональному) тезису ИИ.