Добавить в цитаты Настройки чтения

Страница 82 из 89



У других стран — членов НАТО в 1986 г. имелось 153 подводные лодки, из которых 18 английских и 11 французских являлись атомными; 14 дизельных подводных лодок входили в состав ВМС Японии и 6 — ВМС Австралии. Всего у западных стран на вооружении состояло 312 подводных лодок.

Выводы:

1. По сравнению с периодом Второй мировой войны изменилась материальная база ведения вооруженной борьбы на море.

Подводный флот стат атомным, а его основным оружием — баллистические и противокорабельные ракеты большой дальности. Основу ударных боевых надводных кораблей составляют атомные авианосцы и ракетные корабли.

2. В связи с изменением качественных параметров кораблей пространственный размах морских операций резко возрастает и они будут носить скоротечный характер.

3. Подрыв экономики воюющих сторон может решаться не борьбой на коммуникациях, а разрушением береговых объектов ударами с моря, высокоточным оружием большой мощности или ударами морских стратегических ядерных сил.

Уровень аварийности на кораблях ВМФ СССР и ВМФ США в целом бьи высок, и основная причина аварий на подводных лодках — пожары. Это свидетельствует о несоответствии теории и технологии и отсутствии новых способов конструктивно-технического обеспечения живучести атомных подводных лодок.

Последнее подтверждается и анализом боевых действий в Южной Атлантике в ходе англо-аргентинского военного конфликта (1982 г.), когда от попадания противокорабельных ракет восемь кораблей из состава английской эскадры были потоплены и восемнадцать получили боевые повреждения. При этом каждое повреждение сопровождалось крупными пожарами, развитию которых способствовало наличие на кораблях большого количества горючих материалов (алюминиевые сплавы, краски, линолеум и т. д.).

Существуют и общие причины аварийности отечественных кораблей, которые подтверждаются статистикой.

1. Большая серийность вооружения и военной техники создавала условия для снижения качества при их строительстве и эксплуатации. За 40 лет в ходе выполнения четырех десятилетних кораблестроительных программ в СССР построили 126 проектов кораблей, из них 92 пр. надводных кораблей и 34 пр. подводных лодок. По каждому проекту строились серии, включающие от нескольких единиц до сотен кораблей. Так, в серии дизельных подводных лодок проекта 613 было построено 215 единиц.

Боевые надводные корабли и катера включали 92 различных проекта, в том числе боевые надводные корабли строились по 59 проектам: авианесущие крейсера — 3, ракетно-артиллерийские корабли — 16, противолодочные корабли — 21, минно-тральные корабли —11, десантные корабли — 8: боевые катера имели 33 проекта: ракетно-артиллерийские катера — 12, противолодочные катера — 3, минно-тральные катера —11, десантные катера — 7. Подводные лодки создавались по 34 проектам: РПКСН — 7, многоцелевые АПЛ — 17, дизельные ПЛ — 6, ПЛ спецназначения — 4.

Проекты энергетических силовых установок кораблей — 34: газотурбинные установки — 12, паросиловые установки — 3, атомные установки —10, дизельные установки — 9.

Радиотехническое вооружение, всего комплексов и станций — 243, основные из них: гидроакустические надводных кораблей — 30, подводных лодок — 33: радиолокационные комплексы и станции надводных кораблей — 9, подводных лодок —11; поисковые станции надводных кораблей — 9, подводных лодок — 7; БИУС надводных кораблей — 18, подводных лодок— 17. Торпедное, минное и противолодочное оружие и вооружение включало 94 образца, из них; торпедное оружие — 9, противолодочные ракеты — 8, минное оружие — 9, противоминное — 31, корабельные противолодочные комплексы — 7, торпедные комплексы надводных кораблей — 5, подводных лодок — 8; системы управления торпедной стрельбой — 6; оружие и вооружение ПДСС — 10.

2. На стадии создания и разработки проектов аварийности способствовали: технологическое отставание в ряде областей (информатики, обеспечения скрытности плавания, средств обнаружения); конструктивные недоработки, связанные в первую очередь с множественностью разработчиков различных систем; низкое качество металла и некоторых других материалов.

3. На стадии строительства сказывались: несоблюдение технологической дисциплины и требований конструкторов, сроков постановки отдельных узлов и систем, а также очередности проведения операций; низкое качество работ, поскольку завышались плановые показатели, а сами работы проводились не ритмично.

4. На стадии испытаний и приемки нарушался график из-за несвоевременных поставок и монтажа оружия и техники; под нажимом заинтересованных организаций корабли принимались с заведомо неисправными системами, причем недостатки предполагалось устранить в процессе эксплуатации.

5. Наконец, на стадии эксплуатации росту аварийности способствовали: запущенная система базирования (береговое обеспечение, судоремонт, снабжение); низкий ресурс оборудования и техники при ее интенсивном использовании, приводивший к нарушению инструкций по эксплуатации; недостаточная выучка личного состава, особенно в вопросах борьбы за живучесть; слабая оснащенность средствами защиты и спасения, а также отсутствие координации на международном уровне; формальный характер выводов по результатам аварии, отсутствие информации у всех заинтересованных лиц и организаций.



И. М. Капитанец

«Проблемы обеспечения живучести кораблей».

Глава из книги «НА СЛУЖБЕ ОКЕАНСКОМУ ФЛОТУ»

В итоге работы правительственной комиссии по расследованию обстоятельств гибели АПЛ «Комсомолец» в очередной раз был поставлен вопрос о живучести наших кораблей, о возможностях спасения и выживания экипажей в море.

Достаточно сказать, что впервые эта проблема рассматривалась не только с точки зрения действий личного состава корабля, но и с учетом всех факторов обеспечения его живучести:

— уровня развития самой теории живучести;

— достаточности ее конструктивно-технического обеспечения при проектировании, особенно непотопляемости, взрывопожаробезопасности;

— качества документации по борьбе за живучесть в наиболее вероятных и опасных случаях поступления воды, возникновения пожаров, аварий оружия и энергетических установок, летательных аппаратов на кораблях;

— степени автоматизации управления борьбой за живучесть:

— качества подготовки экипажа;

— уровня развития средств защиты людей и аварийно-спасательного обеспечения.

Следует отметить, что подобный анализ был проведен западными военными специалистами по результатам боевых действий в Южной Атлантике в ходе англо-аргентинского конфликта (1982 г.).

Потеря в составе английской эскадры восьми кораблей и серьезные боевые повреждения восемнадцати в значительной степени обусловливались недостаточной конструктивной обеспеченностью их живучести и слабой подготовкой личного состава.

На основании такого анализа в ВМС США и НАТО был разработан и реализован целый комплекс мер по улучшению конструкции кораблей и совершенствованию организационно-технического обеспечения их живучести. Предусмотрено введение спецодежды из новых современных материалов, создание термостойких костюмов и более совершенных изолирующих противогазов, увеличение норм снабжения ими кораблей, а также внедрение специальных комплексных тренажеров для подготовки экипажей (в ходе боевых действий большинство офицеров не могли в достаточной степени организовать борьбу за живучесть и руководить подчиненными, которые оказались плохо обученными действиям в сложных условиях боевых повреждений).

Значительному сокращению и упорядочению подверглись руководящие документы по живучести, доверие к которым было подорвано из-за их неконкретности, запутанности, малой информативности и большого объема.

Изучение зарубежного опыта и анализ аварий и катастроф с нашими кораблями позволяют сделать вывод, что уровень решения проблем обеспечения живучести определяется в целом состоянием развития науки и техники в стране, влияющим на разработку теории корабля и реализацию ее положений в конструкторских решениях; надежностью вооружения; качеством аварийно-спасательных средств и обеспеченностью соответствующей базы для подготовки личного состава и управления борьбой за живучесть.