Добавить в цитаты Настройки чтения

Страница 54 из 61



Дилан Иванс в книге «Плацебо» отнес любые успехи гомеопатии на счет названного эффекта. Однако и ему пришлось признать: мета-анализ ряда исследований, опубликованный в 1997 году в «Ланцете», засвидетельствовал, что в среднем она значительно эффективнее плацебо. Как же Иванс выпутывается из этой квадратуры круга? Заявляя, что, мол, «глупо было бы отвергать сразу всю физику, химию и биологию, чьи законы подтверждены миллионами наблюдений и экспериментов, на том лишь основании, что некий эксперимент дал результат, противоречащий этим законам». Скептик из университета Мэриленда Роберт Ли Парк прибегает к тому же аргументу: «Если бы растворение веществ до бесконечности действительно имело приписываемые ему свойства, это потребовало бы ревизии самых основ науки».

Но можно ли утверждать, что признание воздействия сверхслабых растворов на организм вернет современную науку вспять, на исходные позиции? Нет, нельзя. Ведь все ее знания, как отметил сам же Парк, уже обоснованы и подтверждены миллионами экспериментальных наблюдений. Ни одно из существующих доказательств не изменится ни на йоту, если и гомеопатия будет включена в академический корпус. Почему? Да потому, что никакой научный опыт до сих пор не открыл всего, что мы хотели бы знать о молекулярных свойствах воды.

О жидкостях мы вообще знаем очень немного. С твердыми телами куда проще: их молекулярные структуры изучены за десятилетия такими точными методами, как, например, динамическая дифракция гамма-излучения. Именно таким путем Розалинд Франклин и Фрэнсис Крик с Джеймсом Уотсоном описали строение ДНК: исследователи направляли на молекулу пучок частиц, изучали распределение интенсивности их дифракции на регулярной кристаллической решетке, которую образуют атомы, затем анализировали полученную картину. Ключевое слово здесь — «регулярность». Жидкости аморфны, а точных методов для исследования неупорядоченных микроструктур не существует.

Химики полагают, что при отсутствии внешних воздействий структура жидкого тела, скорее всего, гомологична в любой его точке; связи между частицами должны выстраиваться так, чтобы минимизировать напряженность. Ну а что происходит при температурных колебаниях, под высоким давлением или при намагничивании? Может ли вода, налитая в графин, быть упорядоченной в одной его части и аморфной в другой? Взаимодействует ли она с молекулами стекла? Все это нам не известно.

Лишь одно мы знаем совершенно достоверно: вода — действительно весьма необычное вещество. В одном броске камешка от бурых илистых вод Темзы, прямо напротив здания парламента, находится кабинет ученого, которого можно по праву считать мировым экспертом по воде. Мартин Чаплин, профессор Лондонского университета южного берега Темзы, посвятил свою карьеру изучению физических свойств жидких тел. Сколько же научных аномалий ему открылось в этой области? Как утверждает он сам — по меньшей мере, шестьдесят четыре.

Большинство из них обусловлено характером слабых связей между молекулами воды. У кислородного атома в соединении H2O несколько электронов не связаны с водородными атомами своей молекулы. Однако их отрицательные заряды притягиваются к положительным зарядам водородных протонов в других молекулах.

Хотя эти связи, называемые водородными, неустойчивы — при нормальных температурах они то и дело разрываются, трансформируясь в круговороте молекул, — на них основаны многие необычные особенности воды. На них же фактически держится вся жизнь: именно водородные связи сделали Землю пригодной для человечества. Так, благодаря им вода, единственная из всех жидкостей, при охлаждении не сжимается, но расширяется. Оттого и лед не уходит на дно; а будь иначе, океаны бы промерзли насквозь, и лишь самый поверхностный слой таял под лучами солнца. Тогда сложные формы живой материи не смогли бы появиться на планете.



Но свойства воды связываются и напрямую с основами феномена, который мы зовем жизнью. Откликнувшись на просьбу одного из журналов издательской компании «Нейчур» написать обзорную статью о значении воды в биологии, Чаплин начал свой текст довольно-таки провокационным заявлением: «Давно пора воде утвердиться на законных основаниях в принадлежащей ей по праву роли — важнейшей и самой активной из всех биологических молекул».

Сам же профессор взял на себя роль начальника штаба, координатора кампании по признанию особых заслуг H2O в нашем мире. Его обзор читается как идейный манифест. Исследования сложных биомолекул Чаплин называет «более фешенебельными», но для любой из них вода служит главной движущей силой. Без электростатики водородных связей невозможны синтез и поддержание структуры белков, функциональной основы наших тел. Когда белковая молекула сформируется, вода служит ей «смазкой», водородные связи дают ее структуре гибкость и одновременно стабильность. Вода не менее важна для белков, чем аминокислоты, из которых состоят их молекулярные цепочки.

В ДНК водородные связи формируют вторичную — спиралевидную структуру нуклеотидов; ориентация молекул воды меняется в зависимости от парных сочетаний азотистых оснований и последовательности, в которой они соединены. Эта пространственная модель с ее электростатикой позволяет белкам (также содержащим воду) быстро сближаться и точно соединяться с соответствующими парами оснований. Таким образом, вода играет, по сути, центральную роль в обработке информации ДНК, а тем самым в развитии живой материи. «В театре жизни жидкая вода не статист, но кульминационный момент спектакля, — объясняет Чаплин. — Она выполняет свою работу и в виде изолированных молекул, и небольшими кластерами, и в более крупных сетях или целых жидкостных фазах, у каждой из которых свое обличье».

В 1998 году Чаплин описал гипотетическую структуру, которую образуют межмолекулярные взаимодействия воды. Его расчеты показали ассоциат, или кластер, из 280 молекул, сгруппированных в икосаэдр — правильный двадцатигранник, где каждая грань имеет форму равностороннего треугольника. Подобную конструкцию использовал в своих проектах геодезических куполов знаменитый архитектор Ричард Бакминстер Фуллер, но и в природе она не редкость: такую оболочку имеют многие вирусы, потому что это самый удобный и надежный способ «упаковки» их белкового содержимого.

Интересно, что фигуру эту связывали с водной стихией еще древние греки. Великий философ Платон определил пять «совершенных» тел, которые он приписал основным элементам Вселенной и их атомам. Из «кубического элемента», как самой устойчивой формы, состоит земля; огонь — правильный четырехгранник с устремленной ввысь вершиной; воздух — восьмигранник; эфир — двенадцатигранник, главная фигура мироздания и «воплощение всего сущего». Воде же, по Платону, соответствовал «обтекаемый» икосаэдр. Поразительно — в 2001 году, спустя три года после того, как Чаплин впервые предположил, что воде присуща эта структура, группа немецких исследователей увидела ее воочию под электронным микроскопом с гигантским разрешением; кластеры имели диаметр в миллионную долю миллиметра.

Икосаэдр — лишь одна из многоугольных форм, которые могут принимать молекулярные кластеры воды: они образуют и пентамеры, и октомеры, и декамеры; есть кубическая модификация, так называемый лед-семь, есть шестиугольный лед (всем известные снежинки)… но и это не исчерпывает богатства структурных моделей. В 2004 году Тацухико Кавамото с группой сотрудников сообщил в «Журнале химической физики», что вода при сжатии или охлаждении разделяется на аккуратные бусинки, каждая из которых чем-то отличается от других. Словно на галечном пляже: с высоты он кажется гладким и однородным, но стоит спуститься с променада, как обнаружится, что у всех камешков разные форма, величина, оттенки, гладкость и твердость. Причина явления, которое наблюдал Кавамото, — всё те же водородные связи, неустойчиво скрепляющие молекулы воды друг с другом. Подобно тому как галечные окатыши в разной мере и с разной скоростью деформируются под ударами волн, набегающих на берег, каждая из этих связей по-своему реагирует на изменения среды. Потому кластеры в общей водной массе так разнообразны по форме и величине.