Добавить в цитаты Настройки чтения

Страница 9 из 10



На мой взгляд, корректно посчитать будущую сумму для сравнения можно следующим образом: мы два раза повторяем операцию с депозитом (2), чтобы получить одинаковый срок с депозитом (1), и мы должны предположить, что полученные проценты мы сразу же размещаем на другом депозите с такой же ставкой (моделируем капитализацию).

Тогда получится, что при открытии депозита (2) мы получим 6500 рублей процентов и положим их на депозит на 2 года со ставкой 6,5 %. И на второй год мы получим также 6500 рублей, но они пролежат на депозите всего год.

Я думаю, что вы уже и сами сможете рассчитать, до какой суммы вырастут полученные нами проценты:

Первые 6500 рублей за два года на депозите со ставкой 6,5 % годовых вырастут до 7345 рублей, а вторые 6500 рублей за год дорастут до 6922 рублей.

Итого за два года мы заработаем 14 267 рубля, что лишь немногим меньше прибыли по депозиту (1) с более высокой ставкой и ежемесячной капитализацией.

Еще раз подчеркиваю важность того, что мы должны сравнивать операции с одинаковыми сроками. То есть следует изменить исходные данные для расчетов таким образом, чтобы уравнять сроки различных вариантов инвестиций.

Если я каждый месяц вкладываю 3000 рублей на депозит с ежемесячной капитализацией, то какая сумма будет на счете через 10 лет?

Сколько денег накопится на счете при регулярных вложениях под одну и ту же ставку с капитализацией, вы можете посчитать по формуле будущей стоимости аннуитета.

Аннуитетом в финансовом мире называется любой поток одинаковых платежей. Например, если пенсионный фонд выплачивает вам пенсию из ваших накоплений одинаковыми ежемесячными платежами, то это аннуитет. И если вы выплачиваете кредит ежемесячными одинаковыми платежами, то это тоже аннуитет.

Будущая стоимость аннуитета (БСА) – это сумма, которая накопится у получателя аннуитета за весь срок получения дохода с учетом постоянного инвестирования полученных платежей.

Где:

Годовой платеж – это сумма, которую мы вкладываем в течение года. Если мы инвестируем деньги ежемесячно, то Годовой платеж равен двенадцати ежемесячным платежам.

N здесь снова означает число периодов начисления дохода и в этой формуле продолжительность периода начисления дохода N должна совпадать с периодом перечисления денег по аннуитету. Доходность рассчитывается также за период N исходя из Годовой доходности и выражается в долях единицы.

Если мы каждый месяц докладываем к нашим инвестициям 3000 рублей и все накопленное инвестируется с доходностью 10 % годовых в течение 10 лет, то мы в итоге накопим 614 534 рубля:

Вдумайтесь немножко: вы отрываете от сердца всего 100 рублей в день и через 10 лет получаете сумму 614 534 рубля! Притом, что если вы просто откладываете по 100 рублей в день, не инвестируя их никуда, то накопленная сумма составит всего 360 000 рублей, то есть почти в два раза меньше!

Сколько нужно ежемесячно откладывать, чтобы накопить 1 000 000 рублей за 5 лет?

В прошлом вопросе мы подсчитывали результат планомерного инвестирования в течение некоторого периода времени. Но чаще мы сталкиваемся с обратной задачей: сколько нужно откладывать денег, чтобы к определенной дате накопить нужную сумму? Ребенок скоро будет поступать в институт, хочется купить собственную квартиру, совершить кругосветное путешествие, открыть бизнес… Да мало ли какие у нас могут быть цели! При помощи следующей формулы мы можем посчитать, сколько денег нужно ежемесячно инвестировать для того, чтобы реализовать запланированное:

Где, как и в предыдущем примере, N – это число периодов начисления дохода. Поскольку мы вычисляем размер ежемесячного платежа, N измеряем в месяцах. Годовая доходность, как и в предыдущих расчетах, подставляется в формулу в долях единицы.

Если мы хотим накопить 1 000 000 (один миллион) рублей за 5 лет и для этого держим деньги на пополняемом депозите с доходностью 7 % годовых с ежемесячной капитализацией, то нам нужно каждый месяц вкладывать 13 968 рублей:

Инвестируя всего 14 000 рублей в месяц, через пять лет вы станете миллионером! А если ваши инвестиции в среднем будут приносить 15 % годовых, то для того, чтобы накопить миллион за те же пять лет, вам нужно будет ежемесячно добавлять к вашим вложениям лишь 11 290 рублей.

Важно отметить, что приведенные аннуитетные формулы работают при условии капитализации процентов. То есть чтобы реально получить расчетный результат, вы должны не забывать снова вкладывать полученный от ваших активов доход.



Кстати, вы можете стать «миллионером» намного быстрее, если, например, возьмете миллион рублей в кредит в банке. Давайте посчитаем, во сколько вам это обойдется.

Для расчета аннуитета при погашении кредита применяется другая формула:

Где:

Процентная ставка берется в долях единицы в пересчете на месяц, то есть это годовая ставка по кредиту, деленная на 12. Например, для кредита со ставкой 15 % годовых Процентная ставка будет равна:

Итак, если мы берем 1 000 000 рублей в кредит, то при достаточно умеренной ставке по кредиту в размере 15 % годовых нужно будет выплачивать по 23 790 рублей каждый месяц в течение 5 лет:

Разумеется, миллион сегодня лучше, чем миллион через 5 лет. Но и 23 790 рублей каждый месяц платить заметно тяжелее, чем 14 000 рублей…

Как быстро («на пальцах») оценить выгодность вложений?

Исследования показывают, что у многих людей возникают сложности с вычислением и пониманием процентных ставок (особенно когда считать приходится быстро и в уме). Один из способов справиться с этой проблемой – не пытаться разобраться в процентах, а выяснить, сколько времени потребуется для того, чтобы удвоить количество инвестированных денег с учетом эффекта сложных процентов. Тогда от непривычных и непонятных процентов мы перейдем к более привычным единицам измерения – к годам.

Вычислить это проще, чем кажется. Задолго до того, как были изобретены калькуляторы и электронный таблицы, инвесторы использовали «Правило 72х».

Как работает это Правило?

Представьте себе, что вам предложили инвестировать деньги с доходностью 10 % годовых с возможностью капитализации процентов. Чтобы с помощью Правила 72 вычислить, сколько лет потребуется для удвоения суммы первоначальных инвестиций, нужно просто разделить 72 на годовую ставку доходности. То есть для 10 % годовых удвоение суммы произойдет через 72/10 = 7,2 лет. Аналогично, с процентной ставкой 20 % годовых сумма удвоится за 3,6 лет (72/20 = 3,6).

Правило 72 не подходит для точных расчетов, но оно позволяет быстро и без использования компьютера или калькулятора получить достаточно реалистичную оценку результата.

Как же мы можем воспользоваться Правилом 72 для принятия решения о выгодности вложения денег в тот или иной актив? Разумеется, чем быстрее прирастают наши активы, тем лучше. Но мы должны иметь представление о реалистичных сроках удвоения капитала с приемлемым для нас уровнем риска.

Я считаю, что если инвестиции удваиваются не быстрее, чем за 5 лет, то это инвестиции вполне приемлемого риска. При этом если увеличение суммы в два раза происходит более чем за 10 лет, то это не очень интересно. Если же Правило 72 показывает, что денег станет в два раза больше уже через 2 года, то это повод сильно задуматься, не слишком ли это хорошо для того, чтобы быть правдой.

Часть 4. И все же, куда вложить деньги?

Теперь мы перейдем к наиболее часто задаваемому финансовым консультантам вопросу: «куда вложить деньги»?

Куда вложить 15 000 долларов (200 000 рублей, 5 миллионов рублей, 5000 рублей)?

Может быть, мой ответ на этот вопрос покажется вам неудобным, но начинать нужно не с выбора возможных вариантов вложения денег, а с определения приемлемого уровня риска.

Я много раз наблюдал, как люди принимают решения об инвестировании свободных денег. И очень часто начинающий инвестор идет следующим путем: