Страница 10 из 160
При описании поведения машин часто — и, обычно, в шутку — используются «человеческие» понятия: «Моя машина не хотела заводиться сегодня утром»; или «Мои часы до сих пор думают, что они идут по калифорнийскому времени»; или «Мой компьютер заявляет, что не понимает последнюю команду и не знает, что делать дальше». Конечно же, мы никоим образом не подразумеваем, что машина действительно может чего-либо хотеть, часы — что-то думать, а компьютер[30] — о чем бы то ни было заявлять, а также понимать или даже знать, что он делает. Тем не менее подобные выражения могут быть поистине информативными и способствовать нашему пониманию, при условии, что мы их будем рассматривать только в том духе, в котором будем их произносить, а не в буквальном смысле слова. Я всегда занимаю в целом аналогичную позицию по отношению к различным заявлениям сторонников ИИ о том, что сконструированные человеком устройства могут обладать характеристиками сознания — безотносительно от того, что под этим подразумевается! Если я согласен говорить, что черепашка Грэя Уолтера может быть голодной, то только лишь в полушутливом тоне. И если я готов использовать такие термины типа «боль» или «удовольствие», связывая их с бу-показателем некоторого устройства, как я это делал выше, то единственная причина этому заключается в том, что эти выражения облегчают мое понимание поведения устройства благодаря определенным аналогиям с моим собственным поведением и состояниями сознания. Причем здесь я ни в коем случае не подразумеваю, что эти аналогии особенно близки, или что не существует прочих — нерегистрируемых сознанием — явлений, которые влияют на мое поведение гораздо более схожим образом.
Я надеюсь, что читателю мое мнение достаточно ясно: я считаю, что проблема понимания свойств сознания гораздо более многогранна, чем можно извлечь непосредственно из экспериментов с ИИ. Тем не менее, я уверен в необходимости признания этой области исследований и уважительного отношения к ней. При этом я не собираюсь утверждать, будто бы достижения в задаче моделирования действительного интеллекта велики (если они вообще есть). Но нужно всегда помнить о том, что сам предмет очень «молод».
Компьютеры станут быстрее, будут обладать высокоскоростным доступом к более вместительным устройствам хранения информации, иметь большее количество логических элементов и научатся выполнять большее число операций параллельно. Улучшится логическая структура и техника программирования. Эти машины — носители философии ИИ — значительно и всесторонне улучшат свои возможности. Более того: сама философия отнюдь не является абсурдной по самой своей сути. Возможно, что человеческий разум может и в самом деле быть смоделирован с очень большой степенью точности при помощи электронных компьютеров — тех самых, которыми мы располагаем сегодня и принципы действия которых нам уже понятны, — но более мощных по своим характеристикам, чье появление в ближайшие годы вполне предсказуемо. Вероятно даже, что эти устройства и вправду будут разумными; возможно, они будут думать, чувствовать и иметь собственный интеллект. Или же, наоборот, они не будут разумными, и потребуются какие-то новые принципы, в которых мы сегодня остро нуждаемся. В этом-то и заключается вопрос, от которого нельзя просто отмахнуться. Я постараюсь предоставить в ваше распоряжение факты так, как я их вижу; затем я приведу свои собственные соображения на этот счет.
Сильный ИИ и китайская комната Серла
Существует точка зрения, называемая сильный ИИ, которая занимает весьма радикальную позицию по этим вопросам[31]. Согласно теории сильного ИИ, не только вышеупомянутые устройства будут разумны и наделены интеллектом — свойства разума могут быть присущи логическим действиям любого вычислительного устройства, даже простейших из них, механических, одним из которых является, например, термостат[32]. Основная идея заключается в том, что умственная деятельность — это просто выполнение некоторой хорошо определенной последовательности операций, часто называемой алгоритмом. Далее я уточню это понятие. А пока нам будет достаточно определить алгоритм как своего рода вычислительную процедуру. В случае термостата алгоритм чрезвычайно прост: устройство фиксирует повышение или понижение температуры по отношению к заданной величине и размыкает или замыкает цепь, соответственно. Алгоритм, соответствующий более-менее нетривиальной деятельности головного мозга, должен быть гораздо более сложноструктурированным, но — согласно концепции сильного ИИ — это будет все же алгоритм. Он будет очень значительно отличаться от простейшего алгоритма термостата по степени сложности, но не обязательно будет иметь принципиальные отличия. Таким образом, с точки зрения сильного ИИ, существенная разница между деятельностью человеческого мозга (включая все проявления сознания) и работой термостата состоит единственно в этой самой усложненности (или, возможно, «структуре более высокого порядка», или «способности обращения к самому себе», или в любом другом свойстве, которое можно приписать алгоритму), имеющей место в первом случае.
И, что более важно, все свойства ума — мышление, способность чувствовать, интеллект, понимание, сознание — должны рассматриваться, согласно этому подходу, просто как разные аспекты сложной деятельности; иными словами, они есть не более, чем свойства алгоритма, выполняемого мозгом. Достоинства любого конкретного алгоритма заключаются в его «технических характеристиках», таких как точность результатов, область применимости, экономичность и скорость выполнения. Алгоритм, нацеленный на подражание тому, что, как предполагается, действует в мозге человека, должен быть невообразимо сложным. Но если такой алгоритм для мозга существует — а это как раз то, что с уверенностью утверждают поборники идеи сильного ИИ, — то он в принципе мог бы быть запущен на компьютере. В сущности, он мог бы выполняться на любом современном компьютере общего назначения, если бы не имеющиеся ограничения по скорости и пространству для хранения данных. (Обоснование этого замечания будет дано позднее, когда мы перейдем к рассмотрению универсальной машины Тьюринга.) Предполагается, что такие ограничения будут сняты с появлением в недалеком будущем мощных быстродействующих машин. Тогда такой алгоритм, если он будет открыт, мог бы, вероятно, пройти тест Тьюринга. И как только он будет запущен, считают сторонники сильного ИИ, он будет сам по себе испытывать чувства, обладать сознанием, быть разумом.
Далеко не каждый согласится с тем, что разумные состояния и алгоритмы можно считать идентичными в указанном контексте. Наиболее остро критиковал эту точку зрения американский философ Джон Серл [1980, 1987]. Он приводил в пример ситуации, когда должным образом запрограммированный компьютер проходил упрощенную версию теста Тьюринга, и все же — он подкрепляет эти выводы очень сильными аргументами — «понимание» как свойство интеллекта полностью отсутствовало. Один из таких примеров базируется на компьютерной программе, разработанной Роджером Шенком (Шенк, Абельсон [1977]). Задачей программы была имитация понимания простых историй типа: «Мужчина вошел в ресторан и заказал гамбургер. Когда гамбургер принесли, оказалось, что он сильно подгорел, и рассерженный мужчина выскочил из ресторана, не заплатив по счету и не оставив чаевых». В качестве второго примера можно взять другую историю: «Мужчина вошел в ресторан и заказал гамбургер. Когда его принесли, мужчина остался им очень доволен. И, покидая ресторан, он дал официанту щедрые чаевые перед тем, как заплатить по счету». Чтобы проверить «понимание» этих историй компьютером, его «попросили» определить, съел ли мужчина гамбургер в каждом отдельном случае (факт, который не был упомянут в тексте явным образом). На этот простой вопрос к таким простым историям компьютер может дать ответ, совершенно неотличимый от того, что дал бы англоговорящий человек, а именно: «нет» в первом случае и «да» — во втором. Так что в этом, очень узком, смысле машина уже прошла тест Тьюринга!
30
По состоянию дел на 1989 год!
31
Везде в этой книге я использую термин Серла «сильный ИИ» для обозначения этой радикальной точки зрения просто чтобы быть точным. Слово «функционализм» часто применяется по отношению к такому же по сути воззрению, но, наверное, не всегда корректно. Этой точки зрения придерживаются Мински [1968], Фодор [1983], Хофштадтер [1979], Моравец [1989].
32
См. работу Серла [1987] в качестве примера такого утверждения.