Добавить в цитаты Настройки чтения

Страница 4 из 16



Комплекс, или аппарат Гольджи (КГ), представляет собой совокупность цистерн, пузырьков, пластинок, трубочек, мешочков, ограниченных мембраной, в которых накапливаются и упаковываются синтезированные продукты (см. рис. 1). Эти продукты с помощью элементов комплекса выводятся из клетки, кроме того, в них происходит синтез полисахаридов, образование белково-углеводных комплексов и модификация переносимых молекул. В световом микроскопе КГ выглядит в виде сеточки или системы канальцев и вакуолей. КГ имеется во всех клетках человека, кроме эритроцитов и роговых чешуек эпидермиса. В большинстве клеток КГ расположен вокруг или вблизи ядра. В КГ выявляются три мембранных элемента: уплощенные мешочки (цистерны), пузырьки и вакуоли. КГ – трехмерная структура чашеобразной формы, состоящая из нескольких (от одной до нескольких сот) диктиосом (от греч. dyktion – «сеть»). Каждая диктиосома содержит 4–8 (в среднем 6) лежащих параллельно уплощенных цистерн, пронизанных порами с расширенными концами, от которых отщепляются вакуоли, содержащие синтезированные вещества. Цистерны ассоциированы со множеством мембранных пузырьков, а также с более крупными секреторными гранулами. Элементы комплекса Гольджи связаны между собой каналами.

Мембраны комплекса Гольджи образуются и поддерживаются гранулярным эндоплазматическим ретикулумом, в котором синтезируются мембранные компоненты. Они переносятся транспортными пузырьками, отпочковывающимися от ЭР, и сливаются с КГ, от которого постоянно отпочковываются секреторные пузырьки, а мембраны цистерн постоянно обновляются. Они поставляют гликокаликс и синтезированные вещества к плазмолемме, таким образом обеспечивается и обновление плазмолеммы. Одной из важнейших функций КГ является сортировка белков.

Лизосомы – мембранные органеллы, содержащие около 50 видов различных гидролитических ферментов, которые синтезируются на рибосомах гранулярного эндоплазматического ретикулума, откуда переносятся транспортными пузырьками в КГ, где они видоизменяются. От поверхности КГ отпочковываются первичные лизосомы. Все лизосомы клетки формируют единое лизосомное пространство, в котором постоянно поддерживается кислая среда рН колеблется в пределах 3,5–5,0. Мембраны лизосом устойчивы к заключенным в них ферментам и предохраняют цитоплазму от их действия.

Различают четыре функциональные формы лизосом. Первичные лизосомы, отпочковавшиеся от комплекса Гольджи, сливаясь с фагосомой, образуют вторичную лизосому (фаголизосому), в которой происходит переваривание поглощенных веществ до мономеров. Последние транспортируются через лизосомальную мембрану в цитозоль. Непереваренные вещества остаются в лизосоме, в результате чего образуется остаточное тельце. Кроме того, лизосомы переваривают поврежденные структуры собственной клетки (аутолизосома).

Пероксисомы представляют собой пузырьки диаметром от 0,2 до 0,5 мкм, окруженные мембранами, содержащие окислительные ферменты (около 40 % всех белков составляет каталаза), производящие и разрушающие перекись водорода. Они используют молекулярный кислород.

Митохондрии, являющиеся «энергетическими станциями клетки», участвуют в процессах клеточного дыхания и преобразования энергии в форму, доступную для использования клеткой. В световом микроскопе митохондрии выглядят в виде округлых, удлиненных или палочковидных структур длиной 0,3–5,0 мкм и шириной 0,2–1,0 мкм. Количество, размеры и расположение митохондрий зависят от функции клетки, ее потребности в энергии. Так, в каждой печеночной клетке их количество достигает 2500. С помощью электронной микроскопии установлено, что митохондрии являются органеллами с двойными мембранами (рис. 5). Между наружной и внутренней митохондриальными мембранами расположено межмембранное пространство. Внутренняя мембрана образует многочисленные складки, или кристы, благодаря которым внутренней мембраны резко возрастает. На внутренней поверхности крист лежит множество электронноплотных субмитохондриальных элементарных частиц (до 4000 на 1 мкм2 мембраны), имеющих форму гриба. В пространстве, ограниченном внутренней митохондриальной мембраной, находится мелкозернистый матрикс.

Рис. 5. Митохондрия (по Б. Албертсу и др.; по К. де Дюву, с изм.). I – общая схема строения: 1 – наружная мембрана; 2 – внутренняя мембрана; 3 – кристы; 4 – матрикс; II – схема строения кристы: 5 – складка внутренней мембраны; 6 – грибовидные тельца

Митохондрии содержат собственную ДНК, РНК и рибосомы, которые находятся в матриксе. Таким образом, митохондрии снабжены собственной генетической системой, необходимой для их самовоспроизведения и синтеза белков. Следует подчеркнуть, что митохондриальные ДНК, РНК и рибосомы отличаются от таковых собственной клетки и весьма сходны с прокариотическими.

ВНИМАНИЕ



У млекопитающих, в том числе и человека, митохондриальный геном наследуется от матери.

Митохондрии размножаются путем деления уже существующих независимо от деления других митохондрий и самой клетки.

В клетках постоянно происходит метаболизм (от греч. metabole – «перемена, превращение»), или обмен веществ, который представляет собой совокупность процессов ассимиляции (реакции биосинтеза сложных биологических молекул из более простых) и диссимиляции (реакции расщепления). В результате диссимиляции освобождается энергия, заключенная в химических связях веществ. Эта энергия используется клеткой для осуществления различной работы, в том числе и ассимиляции. Напомним, что энергия не возникает и не уничтожается, она лишь переходит из одного вида в другой, пригодный для выполнения работы. Клетка использует энергию, заключенную в химических связях аминокислот, моносахаридов и жирных кислот. Они образуются в результате пищеварения из белков, углеводов и жиров и поступают в клетку.

Рассмотрим энергетический обмен на примере расщепления глюкозы. Глюкоза транспортируется через плазматическую мембрану, и в цитоплазме происходит ее бескислородное расщепление, или гликолиз. Гликолиз – это многоступенчатый ферментативный процесс, в результате которого из одной молекулы глюкозы образуются две молекулы пировиноградной кислоты и две молекулы АТР (с учетом двух молекул АТР, затрачиваемых для осуществления реакций). Пировиноградная кислота подвергается дальнейшему окислению (аэробному при участии кислорода) в митохондриях, в которых имеются цепи ферментов, катализирующие реакции синтеза АТР (аденозинтрифосфат). АТР является универсальным переносчиком и основным аккумулятором энергии в клетке. Энергия заключена в высокоэнергетических связях между остатками фосфорной кислоты.

При отщеплении от АТР одной фосфатной группы образуются АДР (аденозиндифосфатная кислота) и фосфат и выделяется свободная энергия, которая используется клеткой для осуществления работы. В митохондриях АДР, соединяясь с остатком фосфорной кислоты, превращается в АТР. В результате гликолиза освобождается лишь около 5 % энергии, остальная освобождается в митохондриях в процессе аэробного окисления и запасается в АТР. В расчете на одну молекулу глюкозы образуется 36 молекул АТР.

Ядро – основная клеточная структура, имеется во всех клетках человека, кроме эритроцитов и тромбоцитов. В большинстве клеток его форма шаровидная или овоидная, однако встречаются и другие формы ядра (кольцевидное, палочковидное, веретеновидное, четковидное, бобовидное, сегментированное, полиморфное и др.). Размеры ядер колеблются в широких пределах от 3 до 25 мкм. Наиболее крупное ядро имеет яйцеклетка. Большинство клеток человека одноядерные, однако имеются двухъядерные (например, некоторые нейроны, гепатоциты, кардиомиоциты), а некоторые структуры многоядерные (мышечные волокна миосимпласты).

В ядре различают следующие структуры: ядерную оболочку, хроматин, ядрышко и нуклеоплазму. Ядро окружено ядерной оболочкой, состоящей из внутренней и наружной ядерных мембран толщиной 8 нм каждая, разделенных перинуклеарным пространством (или цистерной ядерной оболочки) шириной 20–50 нм. Обе являются элементарными клеточными мембранами. К наружной, переходящей в гранулярный эндоплазматический ретикулум, прикреплены рибосомы. Перинуклеарное пространство составляет единую полость с эндоплазматическим ретикулумом (см. рис. 1).