Добавить в цитаты Настройки чтения

Страница 8 из 19



По результатам новейших исследований советского океанографа В. Н. Степанова, из-за различий температуры и солености в меридиональном направлении вертикальная структура вод по этим основным характеристикам в тропических широтах и на экваторе несколько различна. В тропиках - верхний слой теплой (24-28°) высокосоленой (35-37%о) воды, под ним - слой максимальной солености с более низкой, постоянно понижающейся с глубиной температурой. У экватора - очень высокая температура (27-29°) и несколько пониженная соленость (34-35%о) на поверхности, ниже - существенное, часто резкое понижение температуры, совпадающее со слоем максимальной солености.

По вертикали толща воды разделяется, особенно у экватора, на легкую поверхностную и значительно более плотную воду ниже слоя скачка температуры. В результате воды очень устойчивы по вертикали. Чтобы перемешать воду до значительной глубины, необходимо приложить большое дополнительное усилие. Ветровое волнение, обычно слабое в низких широтах, перемешивает воду до слоя скачка плотности или еще меньше. Конвекция здесь невелика. Слабое перемешивание верхних слоев океана по вертикали - одна из существенных особенностей природы тропических вод, имеющая большое значение для развития жизни.

Сезоны в тропических водах. Известно, что на тропической суше смена времен года выражается в основном в чередовании сухого зимнего и влажного летнего сезонов и в значительно меньшей мере - в изменениях температуры воздуха. О сезонной цикличности океанографических явлений в низких широтах известно очень мало. Сезонность явлений в тропических водах определяется следующими основными факторами.

1. В течение года изменяется высота солнца, продолжительность светлого времени суток и в связи с этим - величина солнечной радиации. Высота солнца в полдень на разных широтах:

Как видно, различия достаточно значительны. Продолжительность светлого времени суток на экваторе равна 12 час., на тропиках - от 10 час. 20 мин. до 13 час. 40 мин. Таким образом, в периферийных частях тропического пояса условия нагрева существенно меняются.

2. В течение года изменяется характер атмосферной циркуляции, в частности на 5-10° по меридиану смещаются границы действия пассатов. В результате на обширной субэкваториальной акватории происходит сезонная смена господствующих ветров: летом - несильный экваториальный муссон, зимой - устойчивый и сильный пассат. В связи с этим изменяются границы пассатных течений и экваториального противотечения: летом северного полушария - на север, зимой - на юг; смещаются зоны конвергенции и дивергенции, изменяется скорость течений. В некоторых районах происходит сезонная смена нагонных и сгонных ветров. Еще более существенны изменения циркуляции воздуха и вод в Индийском океане.

3. Изменения атмосферной циркуляции вызывают чередование сухого и влажного сезонов, количества осадков и величины испарения.

В результате по сезонам изменяются температура (до 5-6°) и соленость воды верхнего слоя, поверхностные течения, вертикальные движения вод. Особенно значительны изменения в местах сезонного развития апвелинга. Очень резкие изменения солености происходят в приустьевых районах, где летом она падает на несколько промилле. При этом изменяются цвет и прозрачность воды.



Таким образом, зима - обычно время пониженной температуры и высокой солености; лето - время высокой температуры и сравнительно низкой солености воды.

КРУГОВОРОТ ВЕЩЕСТВ

Гидрохимические особенности тропических вод представляют интерес в двух отношениях: как основа биологической и рыбопромысловой продуктивности, а также как основа осадконакопления.

Известно, что в верхних слоях океана вследствие отмирания и разложения организмов и продуктов их жизнедеятельности образуются различные органогенные вещества - фосфаты, нитраты, нитриты, аммиак, силикаты и др., которые совершенно необходимы (наряду со светом, кислородом и углеродом) для развития жизни. Фосфор и азот входят в состав протоплазмы живых клеток. Силикаты необходимы для построения твердых скелетных частей многих организмов. Под действием силы тяжести органогенные вещества медленно погружаются на большие глубины. При этом они окисляются и минерализуются. Накапливаются вещества на глубинах 500- 1000 м и больше. Из поверхностных слоев они медленно, нo постоянно выводятся. Таким образом, складывается необычайная обстановка: у поверхности, где наблюдается обилие солнечного света, тепла, кислорода и углекислого газа и имеются, кажется, благоприятные условия для развития жизни, резко недостает питательных солей. Например, содержание фосфатов в тропиках у поверхности редко превышает 5 мг/м3. Наоборот, на больших глубинах, где практически нет солнечного света и мало кислорода, обычно обилие питательных солей (фосфатов 40- 80 мг/м3). Количество света в тропической зоне в среднем близко к оптимальному, иногда на поверхности повышенное. Поэтому лимитирующим фактором для фотоспитетической деятельности являются питательные соли - фосфаты и нитраты. Советский исследователь В. В. Волковинский определил, что содержание фосфатов ниже 10 мг/м3 существенно задерживает фотосинтез. Углерод (в виде углекислого газа) не лимитирует этот процесс, его в воде в несколько раз больше, чем необходимо.

Как сказано выше, постоянно устойчивая стратификация вод чрезвычайно затрудняет глубокое вертикальное перемешивание и вынос питательных веществ в поверхностный, освещенный солнцем (фотический) слой. Питательные вещества остаются на больших глубинах, лишенных света. Это настоящая «трагедия» тропических вод. Напомним, что в высоких и умеренных широтах океана вследствие зимнего охлаждения поверхностных слоев развивается мощная конвективная вертикальная циркуляция, выносящая питательные соли к поверхности.

Кроме того, в тропиках фотосинтез совершается круглый год, питательные соли потребляются круглогодично, и нет периода, когда могло бы произойти накопление питательных веществ, как это случается зимой в водах высоких широт. В результате, по данным В. Г. Богорова и П. С. Хромова, в тропических водах обычно содержится очень небольшая масса планктона - десятки миллиграммов на кубический метр, относительно .мало рыбы (около 1 мг/м3) и других животных. Одно из следствий малого количества планктона - большая прозрачность воды, до 30-40 м, и чистый голубой или синий цвет.

В связи с этим понятен тот интерес, который в последнее время проявляется к имеющимся в тропических широтах районам подъема вод. Там к поверхности выносится вода с большим содержанием фосфатов, азотистых и других веществ. В общем можно сказать, что у поверхности мало питательных веществ, на глубине 500-1000 м - много. На подповерхностных глубинах 50-200 м содержание их меняется в очень широких пределах, от нуля до многих десятков миллиграммов на кубический метр (по фосфатам). Этим определяется плодородие вод. Там, где происходит подъем вод, уже на глубине 200 м количество фосфатов существенно повышается. Если подъем интенсивен, то резкое увеличение их количества отмечается на 100, 50 и иногда даже на 25 м, т. е. в хорошо освещаемой солнцем зоне фотосинтеза. В районах апвелинга в поверхностном слое соединяется обилие солнечных лучей, питательных веществ, кислорода и углекислого газа. Все это приводит к интенсивному развитию фотосинтетической деятельности фитопланктона, к резкому повышению биологической продуктивности.

По мере подъема плодородных вод в хорошо освещенную солнцем зону питательные соли из нее поглощаются в процессе фотосинтеза. Устанавливается своеобразное подвижное гидрохимическое равновесие: снизу питательные соли поступают в освещенный слой, а в пределах этого слоя, особенно в верхней его части, они поглощаются (днем). Для восточной части экваториальной Атлантики советский океанолог В. П. Сухорук определил скорость поступления фосфатов в зону фотосинтеза - около 3,75 мг фосфора под квадратным метром в сутки. Если скорость поступления солей превышает скорость потребления, высокое содержание их отмечается и на поверхности, например на окраинах банки Кампече до 18 мг Р/м3 в 1965 г. Если же темп потребления выше скорости подъема, то содержание этих солей в поверхностных слоях остается невысоким. Так, в 1970 г. у северо-западного берега Африки наблюдалась холодная поднявшаяся вода с очень малым содержанием фосфатов: питательные соли были уже усвоены фитопланктоном, а вода еще не успела прогреться. Так что сама по себе малая величина содержания фосфатов и других солей может быть связана как с малым поступлением их в верхние слои, так п с высоким темпом их биологического потребления.