Страница 5 из 44
Животные, размножающиеся половым путем, как, например, люди, половину своих хромосом получают от матери, половину — от отца. Это происходит в момент оплодотворения яйцеклетки. У людей каждый из родителей дает плоду по 23 хромосомы, в результате чего оплодотворенная яйцеклетка имеет 46 хромосом, и точно такое же количество хромосом содержится в каждой клетке человеческого эмбриона.
Изучая животное, в каждой клетке которого содержалось всего по две хромосомы, ван Бенеден догадался, что одна из этих хромосом была получена из отцовского сперматозоида, а другая — из материнской яйцеклетки. Таким образом, яйцеклетка и сперматозоид содержат лишь по одной хромосоме, и, когда сперматозоид оплодотворяет яйцеклетку, она получает две хромосомы, и далее от нее путем деления образуются все без исключения клетки данного животного. Но как же взрослая особь, каждая из клеток которой содержит по две хромосомы, производит яйцеклетки и сперматозоиды, которые содержат лишь по одной хромосоме? Выяснилось, что процесс уполовинивания числа хромосом, мейоз, происходит одновременно с развитием яйцеклеток и сперматозоидов. Они проходят через две стадии деления клеток, однако при этом число хромосом в них удваивается лишь один раз. Мейоз — это один из основных генетических процессов. У людей, клетки которых содержат по 46 хромосом, в яйцеклетках и сперматозоидах получается по 23 хромосомы.
Главный вопрос, который так и не смогли разрешить в то время, как же именно передаются от родителей к детям их генетические характеристики. Особенно сложным он оказался для Чарлза Дарвина, выдвинувшего теорию эволюции и естественного отбора. Труды Дарвина по этой проблеме были впервые опубликованы в 1859 году. Каким же образом возникает разнообразие видов и их разнообразные отличительные характеристики, которые затем подвергаются естественному отбору? Дарвин, который не знал о теории клеток, полагал, что исходный материал, из которого развивается эмбрион, происходит из всех без исключения частей тел его родителей. Это стало известно под названием «теории пангенезиса». Племянник Дарвина Фрэнсис Галстон, не веривший в теорию пангенезиса, выдвинул предположение о том, что наследственный материал каким-то образом передается из поколения в поколение.
Фундаментальный прорыв в области генетики совершил Грегор Мендель. Рассказывать об этом весьма сложно, ибо неясно, насколько сам Мендель сознавал все его значение.
Результаты экспериментов Менделя с горохом в монастырском саду под Брно были опубликованы в издаваемом в Брно естественно-историческом журнале в 1866 году, однако они привлекли к себе очень мало внимания. Мендель писал, что характерные признаки гибридов гороха — такие, как округлая или угловатая форма семян, их желтый или зеленый оттенок, — следует считать наследственными признаками. Однако проявляются далеко не все признаки, поскольку некоторые из них подавляются каким-то одним, доминантным. При скрещивании рослых и малорослых сортов все потомство было высокорослым. Когда же между собой скрещивались эти гибриды, то треть потомства оказывалась низкорослым, а две трети — высокорослым. Речь о том, что за все это отвечают гены, в ту пору еще не шла.
Теодор Бовери из университета Вюрцбурга развил выводы ван Бенедена, сделанные в результате наблюдений за хромосомами, и доказал, что при развитии клетки все их характеристики сохраняются неизменными. Бовери пришел к выводу о том, что хромосомы являются независимыми образованиями по отношению к самой клетке. Он также обнаружил, что если в яйцеклетку морского ежа проникало больше одного сперматозоида, то в оплодотворенной яйцеклетке оказывалось избыточное количество хромосом и эмбрион развивался с дефектами. Исследование хромосом в клетках дождевых червей и морских ежей привело Бовери к выводу о том, что хромосомы переходят во вновь образовывавшиеся клетки при делении клеток и что именно они являются носителями наследственной информации. В 1902 году Бовери увидел взаимосвязь между своей теорией об индивидуальном характере хромосом и исследованиями Менделя о передаче наследственных признаков.
Бовери имел дело с генами, хотя их еще не называли так. У самого термина «ген» — весьма запутанное происхождение. В 1889 году Гуго де Вриес придумал термин «панген», которым он решил обозначить мельчайшую единицу, заключающую в себе наследственные характеристики. Затем этот термин укоротил до «гена» Вильгельм Йоханнесен. В 1908 году Уильям Бейтсон, зоолог из Кембриджского университета, описывая вопросы наследственности и изменения видов, написал: «Крайне необходимо придумать слово для того, чтобы обозначить само понятие об этом, и в этой связи слово „генетика“ вполне бы подошло».
Ученым, который с полной достоверностью установил существование генов, стал американец Хант Морган, сделавший это в первой четверти XX столетия. Морган был биологом-исследователем, однако никаких особых успехов он не добился. Однажды он изучал дрозофил и заметил, что одна из дрозофил обладает необычным свойством — белыми глазами (в то время как обычно у дрозофил глаза красные). Морган доказал, что эта необычная особенность была связана с полом дрозофилы.
Затем Морган обнаружил еще трех дрозофил, имеющих общие характерные признаки, которые были связаны с полом, и смог доказать, что за каждый из них отвечала особая область хромосомы, или ген. После этого ученые смогли наконец точно определить место генов в составе хромосом, и это позволило заложить фундамент науки генетики. Было признано, что гены — единственный механизм, отвечающий за передачу наследственных признаков от родителей потомству. Дрозофилы до сих пор остаются важным объектом генетических исследований, а Моргану за его достижения в этой сфере в 1933 году была присуждена Нобелевская премия.
Большая часть исследователей полагала, что ген сформирован на основе белка. Обнаружение в 1920-е годы вирусов, которые обладали способностью воспроизводиться внутри бактерий, подтвердило верность этих взглядов, поскольку исследования показали, что в 90 процентах случаев вирусы состояли из белка. В 1928 году были получены данные, которые указывали на то, что наследственная информация содержится в ДНК. Исследуя бактерию, которая вызывала пневмонию, британский медик и ученый-генетик Фред Гриффитс обнаружил, что эта бактерия существует в двух разновидностях: вирулентной, вызывающей заболевание в подопытных мышах, и безвредной. Когда он нагревал раствор с вирулентными штаммами, они также становились безвредными. Однако, к его удивлению, если он вводил подопытным мышам раствор с вирулентными штаммами, который был обезврежен в ходе нагревания, вместе с раствором с безвредными штаммами, то мыши заболевали пневмонией. Получалось, что вирулентные штаммы даже после того, как их подвергли нагреванию, сохраняли способность передавать свои болезнетворные качества безвредным штаммам.
Для того чтобы выяснить, что же именно передается в этом случае, ученым потребовалось пятнадцать лет, и они установили, что передается именно ДНК. Это открытие вызвало удивление, поскольку в те годы ученые полагали, что передаваться должны белки. Что ДНК содержит наследственный материал, выяснилось в ходе проведенных в 1944 году экспериментов с вирусами. Сами вирусы состоят из белка и ДНК, и исследования доказали, что наследственная информация, которая приводила к образованию новых вирусов, содержалась лишь в ДНК. В конце 1940-х годов было доказано, что качества бактерии меняются не под воздействием белка, но под воздействием ДНК. Однако некоторые ученые сомневались, что гены образованы спиралями ДНК. Предположение, что наследственный материал содержится именно в ДНК, а не в белках, получило окончательное подтверждение в начале 1950-х годов после открытия Криком и Уотсоном двойной спирали ДНК. Затем последовало открытие механизма саморепродукции ДНК и обеспечения строительства белков согласно содержащемуся в ДНК наследственному коду. Так ученые начали приближаться к пониманию молекулярной основы функционирования клеток.