Добавить в цитаты Настройки чтения

Страница 8 из 40



Последствия использования двоичной системы счисления выходят далеко за пределы математики. Степень двойки изменила наш мир. В последние несколько десятилетий мы пришли к пониманию, что вся информация (а это не только числа, но и язык, и все изображения, и звуки) может быть закодирована в виде последовательности нулей и единиц.

Что возвращает нас к памятнику Эзры Корнелла.

С задней стороны сооружения почти полностью скрыт от зрителя телеграфный аппарат, скромно напоминающий о роли Эзры Корнелла в создании Western Union — американской компании, сегодня специализирующейся на срочных денежных переводах, а некогда связавшей воедино весь североамериканский континент.

В качестве плотника, превратившегося в предпринимателя, Корнелл начал работать у Сэмюэля Морзе, чье имя живет в коде точек и тире, благодаря чему английский язык сократился до щелчков телеграфного ключа. Эти два события стали технологическими предшественниками сегодняшних нулей и единиц.

Морзе поручил Корнеллу построить первую правительственную телеграфную линию от Балтимора до Капитолия в Вашингтоне. Он, по-видимому, с самого начала предчувствовал, что принесут ему точки и тире. Когда 24 мая 1844 года линия была официально открыта, Морзе отправил по ней первое сообщение: «Чудны дела Твои, Господи!»

Часть II. Соотношения

7. Получая радость от Х

Итак, пора переходить от арифметики начальной школы к математике средних классов. На протяжении следующих десяти глав мы будем повторять алгебру, геометрию и тригонометрию. Не волнуйтесь, если вы их забыли, — на этот раз не будет никаких экзаменов. Вместо того чтобы беспокоиться о формальной стороне изучения алгебры и геометрии, позволим себе сосредоточиться на самых красивых, важных и далеко идущих идеях этих разделов математики. Например, алгебра может поразить вас головокружительным сочетанием символов, определений и методов, но, в конце концов, все это сведется лишь к двум вещам: нахождению решений x и работе с уравнениями.

Первое похоже на работу детектива. Вы ищете неизвестное число х, при этом вам дается несколько подсказок либо в виде уравнения наподобие 2x + 3 = 7, либо, что менее удобно, в виде запутанного словесного портрета x, то есть словесного описания задачи. В любом случае ваша цель — найти на основании полученных данных значение х.

Напротив, работа с уравнениями представляет собой смесь искусства и науки. Вместо того чтобы остановиться на конкретном значении х, вы подтасовываете и уплотняете соотношения, которые по-прежнему содержат изменяющиеся числа; они называются переменными и как раз и являются тем, что действительно отличает алгебру от арифметики. А уравнения, если можно так выразиться, — просто изящные модели самих чисел. Именно в них алгебра сродни искусству. Можно также сказать, что формулы выражают соотношения между числами в реальном мире, как это происходит в законах движения свободно падающих тел и характеристиках планетарных орбит либо у частот генотипов в популяции. Вот здесь алгебра сродни науке.

Такое определение двух основных функций алгебры не считается общепринятым (оно придумано мной и, как мне кажется, довольно правдиво). В следующей главе я больше расскажу о поиске решений x, а пока, чтобы пояснить мою мысль, сосредоточимся на уравнениях и формулах. Начнем с пары простых примеров.

Несколько лет назад моя дочь Джо поняла зависимость между числами, выражающими ее возраст и возраст ее старшей сестры Лии[30]. Она мне сказала: «Папа, смотри, всегда есть число между моим возрастом и возрастом Лии. Вот сейчас мне шесть лет, а Лии восемь, а семь находится посередине. И даже когда мы станем старше — мне исполнится двадцать, а ей двадцать два года, — посередине по-прежнему будет число!»

Рассуждения Джо — пример алгебраического подхода (хотя никто, кроме гордого отца, возможно, этого и не видит). Она подметила соотношение между двумя постоянно меняющимися переменными: своим возрастом, x, и возрастом Лии — y. Лия всегда будет на два года старше сестры: y = x + 2.

На языке алгебры такие задачи формулировать естественнее всего. Но потребуется небольшая практика, чтобы хорошо разобраться в этой науке, потому что существуют, как говорят французы, faux amis, то есть ложные друзья: пары слов, звучащие похоже и вроде бы означающие одно и то же, но на самом деле имеющие совершенно различные значения.

Предположим, что длина коридора равна y, если ее измерять в ярдах, и f, если мы ее измерим в футах. Составьте уравнение, описывающее отношение между y и f.

Мой друг Грант Виггинс, эксперт по вопросам образования, уже много лет предлагает такое задание студентам и университетским преподавателям. Основываясь на своем опыте, он утверждает, что студенты более чем в половине случаев выполняют его неправильно, даже если совсем недавно прошли и успешно сдали курс алгебры.

Если вы тоже думаете, что ответ — y = 3f, добро пожаловать в клуб неудачников.

Эта формула похожа на «дословный перевод» утверждения «Один ярд равняется трем футам» на язык алгебры. Но как только вы попробуете подставить в уравнение несколько чисел, то сразу увидите, что в нем все перевернуто с ног на голову. Скажем, коридор имеет длину 10 ярдов, то есть 30 футов. Тогда при y = 10 ярдам, понятно, что f = 30 футам, и тождество становится неверным.

Верное уравнение: f = 3y. И здесь 3 действительно означает, что в одном ярде 3 фута (то есть имеет размерность фут/ярд). Когда вы умножите 3 на переменную y в ярдах, то ярды в уравнении сократятся, и у вас останутся, как и должно быть, футы.

Проверка правильности формулы с помощью сокращения единиц измерения помогает избежать грубой ошибки такого типа. Например, она могла бы спасти сотрудников отдела обслуживания клиентов компании Verizon (см. пример в главе 5) от путаницы между долларами и центами.



Еще один вид формул называется тождеством. Когда на уроках алгебры вы раскладывали на множители или перемножали многочлены, вы работали с тождествами. Можете использовать их и теперь, чтобы произвести впечатление на друзей дешевыми трюками с числами. Вот один, который поразил физика Ричарда Фейнмана[31], хотя он сам неплохо считал устно.

Работая в Лос-Аламосе[32], я убедился, что Ганс Бете[33] превосходно считает. Как-то раз мы подставляли числа в формулу и добрались до квадрата 48, я уже было потянулся за калькулятором, и тут Ганс сказал:

— Это будет равняться 2300.

Я стал нажимать кнопки, а он продолжил:

— Если вам нужен точный ответ, то 2304.

Калькулятор тоже выдал 2304.

— Ну и дела! Это впечатляет! — воскликнул я.

— Разве вы не знаете, как возвести в квадрат числа, не превышающие 50? — удивился он. — Возводите в квадрат 50 — равно 2500 — и вычитаете 100 раз разность между 50 и вашим числом (в данном случае это 2), так у вас выйдет 2300. Если хотите иметь точное значение, то к этому числу прибавьте квадрат разности. Выйдет 2304.

Трюк Бете основан на тождестве (50 + х)2 = 2500 + 100x + х2. Он запомнил его и применил при х = –2, так как 48 = 50 — 2. Для интуитивного доказательства этой формулы представьте себе квадратный кусочек ковра со стороной 50 + х.

Его площадь, равная (50 + х) в квадрате, и есть наше искомое. Однако на диаграмме видно, что эта область состоит из квадрата 50 × 50 (в формуле это равно 2500), двух прямоугольников размером 50, умноженное на x, (площадь каждого по 50x; всего 100х), и, наконец, x, умноженное на x, что равно площади х в квадрате.

30

Для зануд: Лия действительно на 21 месяц старше Джо.

31

Ричард Фейнман (1918–1988) — выдающийся американский ученый, основные открытия сделал в области теоретической физики. Один из создателей квантовой электродинамики. В 1943–1945 гг. входил в число разработчиков атомной бомбы в Лос-Аламосе. Прим. перев.

32

Фейнман рассказывает об остроумном методе Бете возведения в квадрат чисел до 50 в книге R. P. Feynman, Surely, You’re Joking, Mr. Feynman! стр. 193 (W. Norton and Company, 1985).

Прим. ред.: Фейнман Р. Вы, конечно, шутите, мистер Фейнман! М.: Колибри, 2008.

33

Ганс Бете (1906–2005) — американский астрофизик, лауреат Нобелевской премии по физике. В 1943–1945 гг. входил в число разработчиков атомной бомбы в Лос-Аламосе. Прим. перев.